[1] MACHADO C G,WINROTH M P,RIBEIRO da SILVA E H D. Sustainable manufacturing in Industry 4.0:An emerging research agenda[J]. International Journal of Production Research,2020,58(5):1462-1484. [2] 刘培基,刘飞,王旭,等. 绿色制造的理论与技术体系及其新框架[J]. 机械工程学报,2021,57(19):165-179. LIU Peiji,LIU Fei,WANG Xu,et al. The theory and technology system of green manufacturing and their new frameworks[J]. Journal of Mechanical Engineering,2021,57(19):165-179. [3] 段建国,李豪晨,张青雷. 面向绿色制造的半组合式船用曲轴结构件生产车间多目标调度优化[J]. 计算机集成制造系统,2021,27(6):1714-1727. DUAN Jianguo,LI Haochen,ZHANG Qinglei. Green manufacturing-oriented multi-objective scheduling optimization for half built-up marine crank shaft component workshop[J]. Computer Integrated Manufacturing Systems,2021,27(6):1714-1727. [4] 耿凯峰,叶春明,吴绍兴,等. 分时电价下多目标绿色可重入混合流水车间调度[J]. 中国机械工程,2020,31(12):1469-1480. GENG Kaifeng,YE Chunming,WU Shaoxing,et al. Multi-objective green re-entrant hybrid flow shop scheduling under time-of-use electricity tariffs[J]. China Mechanical Engineering,2020,31(12):1469-1480. [5] MANSOURI S A,AKTAS E,BESIKCI U. Green scheduling of a two-machine flowshop:Trade-off between makespan and energy consumption[J]. European Journal of Operational Research,2016,248(3):772-788. [6] KUMAR K P. Re-entrant lines[J]. Queueing System,1993,13(1-2):87-110. [7] 吴秀丽,肖晓,赵宁. 考虑装卸的柔性作业车间双资源调度问题[J]. 控制与决策,2020,35(10):2475-2485. WU Xiuli,XIAO Xiao,ZHAO Ning. Flexible job shop dual resource scheduling problem considering loading and unloading[J]. Control and Decision,2020,35(10):2475-2485. [8] 吴秀丽,崔琪. 考虑可再生能源的多目标柔性流水车间调度问题[J]. 计算机集成制造系统,2018,24(11):2792-2807. WU Xiuli,CUI Qi. Multi-objective flexible flow shop scheduling problem with renewable energy[J]. Computer Integrated Manufacturing Systems,2018,24(11):2792-2807. [9] HUANG J D,LIU J J,CHEN Q X,et al. Minimizing makespan in a two-stage flow shop with parallel batch-processing machines and reentrant jobs[J]. Engineering Optimization,2019,49(6):1010-1023. [10] ZHANG X Y,CHEN L. A re-entrant hybrid flow shop scheduling problem with machine eligibility constraints[J]. International Journal of Production Research,2018,56(16):5293-5305. [11] 姚远远,叶春明,杨枫. 双目标可重入混合流水车间调度问题的离散灰狼优化算法[J]. 运筹与管理,2019,28(8):190-199. YAO Yuanyuan,YE Chunming,YANG Feng. Solving bi-objective reentrant hybrid flow shop scheduling problems by a hybrid discrete grey wolf optimizer[J]. Operations Research and Management Research,2019,28(8):190-199. [12] 顾涛,李苏建,林莹璐,等. 周期式退火炉作批处理机的可重入批离散机流水车间调度[J]. 机械工程学报,2020,56(2):220-232. GU Tao,LI Sujian,LIN Yinglu,et al. Research on the re-entrant batch discrete flow shop scheduling for periodic annealing furnace as batch processor[J]. Journal of Mechanical Engineering,2020,56(2):220-232. [13] YING K H,LIN S W,WAN S Y. Bi-objective reentrant hybrid flow shop scheduling:an iterated Pareto greedy algorithm[J]. International Journal of Production Research,2014,52(19):5735-5747. [14] 赵梓焱,李思怡,刘士新,等. 钢铁生产过程动态调度综述[J]. 冶金自动化,2022,46(2):65-79. ZHAO Ziyan,LI Siyi,LIU Shixin,et al. Review on dynamic scheduling of steel production process[J]. Metallurgical Automation,2022,46(2):65-79. [15] XIONG J,XING L,CHEN Y. Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns[J]. International Journal of Production Economics,2013,141(1):112-126. [16] Al-HINAI N,ELMEKKAWY T. Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm[J]. International Journal of Production Economics,2011,132(2):279-291. [17] MEHTA S V,UZSOY R M. Predictable scheduling of a job shop subject to break-downs[J]. IEEE Robotics & Automation Magazine,1998,14(3):365-378. [18] GAO K Z,SUGANTHAN P N,CHUA T J,et al. A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion[J]. Expert Systems with Applications,2015,42(21):7652-7663. [19] NIE L,GAO L,LI P. Reactive scheduling in a job shop where jobs arrive over time[J]. Computers & Industrial Engineering,2013,66(2):389-405. [20] 王维祺,叶春明,谭晓军. 基于Q学习算法的作业车间动态调度[J]. 计算机系统应用,2020,29(11):218-226. WANG Weiqi,YE Chunminge,TAN Xiaojun. Job shop dynamic scheduling based on Q-Learning algorithm[J]. Application of Computer System,2020,29(11):218-226. [21] WANG L,PAN Z X,WANG J J. A review of reinforcement learning based intelligent optimization for manufacturing scheduling[J]. Complex System Modeling and Simulation,2021,1(4):257-270. [22] ARVIV K,STERN H,EDAN Y. Collaborative reinforcement learning for a two-robot job transfer flowshop scheduling problem[J]. International journal of production research,2016,54(4):1196-1209. [23] 曹红倩. 应用改进Q-learning算法解决柔性作业车间调度问题[J]. 国外电子测量技术,2022,41(4):164-169. CAO Hongqian. Application of improved Q-learning algorithm to solve flexible job shop scheduling problem[J]. Foreign Electronic Measurement Technology,2022,41(4):164-169. [24] 韩忻辰,俞胜平,袁志明,等. 基于Q-learning的高速铁路列车动态调度方法[J]. 控制理论与应用,2021,38(10):1511-1521. HAN Xinchen,YU Shengping,YUAN Zhiming,et al. High-speed railway dynamic scheduling based on Q-learning method[J]. Control Theory and Applications,2021,38(10):1511-1521. [25] 周芳芳,樊晓平,叶榛. 均值漂移算法的研究与应用[J].控制与决策,2007,22(8):841-847. ZHOU Fangfang,FAN Xiaoping,YE Zhen. Mean shift research and applications[J]. Control and Decision,2007,22(8):841-847. [26] 杨能俊,郭宇,方伟光,等. 实时数据驱动的离散制造车间自适应调度方法[J]. 组合机床与自动化加工技术,2020,9(9):175-184. YANG Nengjun,GUO Yu,FANG Weiguang,et al. Real-time data driven adaptive scheduling method of discrete manufacturing workshops[J]. Modular Machine Tool & Automatic Manufacturing Technique,2020,9(9):175-184. |