• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (13): 246-259.doi: 10.3901/JME.2023.13.246

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

基于改进Q学习的可重入混合流水车间绿色动态调度

吴秀丽, 闫晓燕   

  1. 北京科技大学机械工程学院 北京 100083
  • 收稿日期:2022-07-09 修回日期:2022-12-19 出版日期:2023-07-05 发布日期:2023-08-15
  • 通讯作者: 吴秀丽(通信作者),女,1977年出生,博士,教授,硕士研究生导师。主要研究方向为生产计划与调度、机器学习和智能算法。E-mail:wuxiuli@ustb.edu.cn
  • 作者简介:闫晓燕,女,1997年出生。主要研究方向为生产计划与调度、机器学习和智能算法。E-mail:18148252183@163.com
  • 基金资助:
    国家自然科学基金资助项目(52175499)。

An Improved Q Learning Algorithm to Optimize Green Dynamic Scheduling Problem in a Reentrant Hybrid Flow Shop

WU Xiuli, YAN Xiaoyan   

  1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083
  • Received:2022-07-09 Revised:2022-12-19 Online:2023-07-05 Published:2023-08-15

摘要: 节能减排对于实现可持续发展具有重要意义。考虑了动态扰动事件对生产的影响,研究了可重入混合流水车间绿色动态调度问题,提出了改进的Q学习算法。在可重入混合流水车间中,将各个加工阶段抽象为智能体,搭建了多智能体强化学习模型。选用均值漂移算法对历史状态进行聚类。为实现全局优化,设计了经验共享策略实现各个智能体之间的经验交互,并设计了自适应贪婪策略选取动作。最后进行了数值实验,实验结果表明,在求解可重入混合流水车间绿色动态调度问题时,改进的Q学习算法优于单一的调度规则,可以在提高生产效率的同时保证较低的能耗,并且能够对实际生产环境中的动态扰动因素快速做出反应,能够有效地解决实际问题。

关键词: 节能减排, 可重入混合流水车间, 绿色动态调度, 改进的Q学习算法

Abstract: Energy conservation and emission reduction are of great significance to achieve sustainable development. This study considers the influence of dynamic disturbance events on production and studies the reentrant hybrid flow shop green dynamic scheduling problem (RHFS-GD). An improved Q learning algorithm (IQL) is proposed to solve the RHFS-GD problem. In a reentrant hybrid flow shop, each stage is abstracted as an agent, and a multi-agent reinforcement learning model is established. The mean shift algorithm is used to cluster the historical states. To achieve global optimization, an experience sharing strategy is designed to realize the experience interaction among agents, and an adaptive greedy strategy is proposed to select actions. Finally, numerical experiments are carried out, and the experimental results show that the IQL algorithm is superior to single scheduling rules, which can improve production efficiency while ensuring low energy consumption, can quickly respond to dynamic disturbance events in the actual production, and can effectively solve practical problems.

Key words: energy conservation and emission reduction, reentrant hybrid flow shop, green dynamic scheduling, improved Q learning algorithm

中图分类号: