• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (13): 24-35.doi: 10.3901/JME.2023.13.024

• 机器人及机构学 • 上一篇    下一篇

扫码分享

变胞折块机构:圆柱体/圆锥体切割链接而成的变胞折块机构设计与运动学分析

贾广鲁1,2, 李兵3,4, 戴建生1,2   

  1. 1. 南方科技大学机械与能源工程系 深圳 518055;
    2. 伦敦国王学院自然科学与数学及工程学院 伦敦 WC2R 2LS;
    3. 机器人技术与系统全国重点实验室(哈尔滨工业大学) 哈尔滨 150001;
    4. 哈尔滨工业大学(深圳)机电工程与自动化学院 深圳 518052
  • 收稿日期:2022-07-24 修回日期:2023-07-15 出版日期:2023-07-05 发布日期:2023-08-15
  • 通讯作者: 李兵(通信作者),男,1969年出生,博士,教授,博士研究生导师。主要研究方向为机器人学、并联机器人与并联机床、智能服务与仿生机器人、宇航空间机构及控制和机械振动与控制等。E-mail:libing.sgs@hit.edu.cn;戴建生(通信作者),男,1954年出生,博士,教授,博士研究生导师。英国皇家工程院院士、IEEE Fellow、ASME Fellow、IMechE Fellow、RSA Fellow,南方科技大学机器人研究院院长、讲席教授,伦敦国王学院终身荣誉教授,ASME机构学与机器人学终身成就奖获得者、ASME机械设计终身成就奖获得者。主要研究方向为理论运动学、机构学、机器人学、智能制造等。获专利30余项,发表论文600余篇。E-mail:daijs@sustech.edu.cn
  • 作者简介:贾广鲁,男,1990年出生,博士后。主要研究方向为构型综合、折纸机构和折块机构等。E-mail:guanglu.jia@kcl.ac.uk
  • 基金资助:
    国家重点研发计划重点专项(2022YFB4701200)。

Metamorphic Oriblocks:Design and Kinematic Analysis of Metamorphic Oriblocks Constructed by Cutting and Linking Cylinders/Cones

JIA Guanglu1,2, LI Bing3,4, DAI Jiansheng1,2   

  1. 1. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055;
    2. Faculty of Natural, Mathematical&Engineering Sciences, King's College London, London WC2R 2LS;
    3. State Key Laboratory of Robotics and System(HIT), Harbin 150001;
    4. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518052
  • Received:2022-07-24 Revised:2023-07-15 Online:2023-07-05 Published:2023-08-15

摘要: 折纸是一种将纸折叠使其具有良好折叠效果的艺术。为了使其能够应用于机器人与机构学领域,学者们相继提出了厚板折纸机构的设计技术,使折纸可以广泛应用于折展机构与可重构机构的设计中。在这些研究中,变胞机构开辟了一种可以将折纸机构特别是厚板折纸引申于机构与机器人广泛应用的重要领域,将折纸机构的折叠特性与机构特征结合起来,使得所得机构更具有高适应性。提出一种新型研究方向,即变胞折块机构。这一研究突破了厚板折纸机构设计的局限,基于圆柱体和圆锥体的几何体,采用几何面分割与切换,提出了一种普适性新型折块机构设计方法,设计出一般类型的圆柱型和圆锥型变胞折块机构。这一类型机构具有典型的变胞特性,进行折体变换,并变换拓扑与活动度。文章通过推导这类变胞折块机构闭环方程,举例进行了不同类型变胞折块机构运动学分析。该类机构在变胞机构、折展机构、过约束机构和可重构机构等领域具有潜在的丰富应用前景。

关键词: 折纸, 厚板折纸, 变胞折块机构, 闭环方程, 运动学分析

Abstract: Origami is the art of folding paper to make it have an excellent folding effect. In order to apply it to the field of robotics and mechanisms, researchers have successively proposed design methods of thick-panel origamis to enable origami to be widely used in the design of foldable mechanisms and reconfigurable mechanisms. Although the thick-panel origamis are kinematically equivalent to zero-thickness origamis, researchers only consider translating the creases to obtain rotational axes of thick-panel origamis in the design process. Therefore, all the rotational axes are parallel to the kinematically equivalent zero-thickness origamis when the thick-panel origamis are at their deployed configuration. Namely, all the rotational axes are parallel to a certain plane. To break through the limitation of the design method of thick-panel origamis, a general design method of metamorphic oriblocks was proposed based on cylinders and cones, which constructs general types of cylindrical and conical oriblocks. This research will also deduce the closure equations of these metamorphic oriblocks, and give examples to analyze the kinematics of different types of metamorphic oriblocks. The metamorphic oriblocks designed in this paper has potential application prospects in the fields of foldable mechanisms, over-constrained mechanisms and configurable mechanisms.

Key words: origami, thick-panel origami, metamorphic oriblocks, closure equations derivation, kinematic analysis

中图分类号: