• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (13): 11-23.doi: 10.3901/JME.2023.13.011

• 机器人及机构学 • 上一篇    下一篇

扫码分享

航天器相对运动模拟与相对位姿测量评估系统设计与试验

周芮1, 刘延芳1, 曹姝清2,3, 武海雷2,3, 齐乃明1   

  1. 1. 哈尔滨工业大学航天学院 哈尔滨 150001;
    2. 上海航天控制技术研究所 上海 201109;
    3. 上海市空间智能控制技术重点实验室 上海 201109
  • 收稿日期:2022-07-23 修回日期:2022-12-13 出版日期:2023-07-05 发布日期:2023-08-15
  • 通讯作者: 刘延芳(通信作者),男,1986年出生,博士,研究员,博士研究生导师。主要研究方向为飞行器机电一体化、航天器智能化装配与测试和航天器智能自主技术。E-mail:yanfangliu@hit.edu.cn
  • 作者简介:周芮,女,1997年出生,博士研究生。主要研究方向为计算机视觉、在轨任务相对位姿测量、地面运动模拟系统。E-mail:20B918111@stu.hit.edu.cn
  • 基金资助:
    国家自然科学基金(52272390)、黑龙江省自然科学基金优秀青年(YQ2022A009)、上海市青年科技英才扬帆计划(20YF1417300)和上海市青年科技英才扬帆计划(19YF1420200)资助项目。

Design and Experiment of Spacecraft Relative Motion Simulation and Relative Pose Measurement Evaluation System

ZHOU Rui1, LIU Yanfang1, CAO Shuqing2,3, WU Hailei2,3, QI Naiming1   

  1. 1. School of Astronautics, Harbin Institute of Technology, Harbin 150001;
    2. Shanghai Institute of Spaceflight Control Technology, Shanghai 201109;
    3. Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai 201109
  • Received:2022-07-23 Revised:2022-12-13 Online:2023-07-05 Published:2023-08-15

摘要: 为满足航天器相对位姿测量技术的验证需求,需要在地面实现目标航天器与追踪航天器之间相对位置和姿态运动模拟,并获取实时位姿数据。航天器相对运动模拟与相对位姿测量评估系统,采用双机械臂和二维导轨实现对目标航天器与追踪航天器相对运动的模拟;通过激光跟踪仪完成标定,建立了目标航天器及追踪航天器两个运动平台的基座、末端及工具的坐标系和基准坐标系,并给出各坐标系间的转换关系。此外,利用“棋盘格”标定板对航天器相对位姿测量系统进行标定,得到相机参数及目标模型靶标工具坐标系、相机工具坐标系与运动平台末端坐标系间的转换关系。航天器相对运动模拟试验结果表明,相对运动位置模拟精度优于3 mm、角度模拟精度优于0.2°;航天器相对位姿测量技术验证试验表明,航天器相距2 m时,相对位置测量最大误差小于0.045 m,角度测量最大误差小于0.417°。试验结果表明,航天器相对运动模拟精度能够满足航天器相对位姿测量评估需求。

关键词: 航天器相对运动, 系统标定, 运动模拟, 位姿测量

Abstract: In order to meet the verification requirements of spacecraft relative pose measurement system, it is necessary to realize the relative position and attitude motion simulation between the target and the chaser spacecraft on the ground, and obtain real-time pose data. Dual manipulators and two-dimensional guide rails are used to build relative motion simulation and evaluation system, which is calibrated by laser tracker. The conversion relationship between the coordinate system of base, end and tool of the two motion platforms are given. In addition, the "checkerboard" calibration board is used to calibrate the relative motion measurement system of the spacecraft, the camera parameters and the conversion relationship between target-model tool coordinate system, the camera tool coordinate system and the motion platform end coordinate system are obtained. The spacecraft relative motion simulation test shows that the relative motion position simulation accuracy is better than 3 mm, the angle simulation accuracy is better than 0.2°. The relative pose measurement verification test shows that when the spacecrafts re separated by 2 m, the relative position measurement maximum error is less than 0.045 m and the angle measurement maximum error is less than 0.417°. The test results show that the simulation accuracy of spacecraft relative motion can meet the demand of spacecraft relative pose measurement evaluation.

Key words: spacecraft relative motion, system calibration, motion simulation, pose measurement

中图分类号: