机械工程学报 ›› 2023, Vol. 59 ›› Issue (7): 156-175.doi: 10.3901/JME.2023.07.156
都建标, 张强, 宗文俊
收稿日期:
2022-06-20
修回日期:
2022-12-21
出版日期:
2023-04-05
发布日期:
2023-06-16
通讯作者:
宗文俊(通信作者),男,1979年生,博士,教授,博士研究生导师。主要研究方向为天然金刚石刀具与微工具制造、红外-可见光宽频谱光学的超精密车削加工、五轴超精密加工CAM软件技术。E-mail:zongwenjun@hit.edu.cn
作者简介:
都建标,男,1993年生,博士研究生。主要研究方向为天然单晶金刚石刀具的增寿技术。E-mail:djb324@163.com
基金资助:
DU Jianbiao, ZHANG Qiang, ZONG Wenjun
Received:
2022-06-20
Revised:
2022-12-21
Online:
2023-04-05
Published:
2023-06-16
摘要: 单点金刚石车削技术是产生纳米特征表面的光学元件重要制造工艺之一。此加工技术在空间科学、生物医学工程、军事、国防和光学等领域有着广泛的应用。然而,金刚石刀具在切削硬脆和黑色金属材料时受到限制,如刀具磨损加剧、刀具寿命缩短以及工件表面加工质量降低等。为了减少刀具磨损和提高工件表面加工质量,相关学者提出了不同的解决方案,将从单点金刚石车削辅助工艺、工件改性、刀具性能改善和超硬材料及刀具方面梳理面向提高硬脆和黑色金属材料加工质量的单点金刚石车削加工技术相关研究,分析当前各种加工技术的优势与局限,提出未来将多种能场辅助的单点金刚石车削技术和基于聚焦离子束改性的金刚石刀具技术作为研究的重点。
中图分类号:
都建标, 张强, 宗文俊. 硬脆及黑色金属材料的单点金刚石车削加工技术综述[J]. 机械工程学报, 2023, 59(7): 156-175.
DU Jianbiao, ZHANG Qiang, ZONG Wenjun. Summary of Single Point Diamond Turning Technology for Hard, Brittle and ferrous Metal Materials[J]. Journal of Mechanical Engineering, 2023, 59(7): 156-175.
[1] YUAN Julong,LÜ Binghai,HANG Wei,et al. Review on the progress of ultra-precision machining technologies[J]. Frontiers of Mechanical Engineering,2017,12(2):158-180. [2] IKAWA N,DONALDSON R,KOMANDURI R,et al. Ultraprecision metal cutting-the past,the present and the future[J]. CIRP Annals-Manufacturing Technology,1991,40(2):587-594. [3] CHENG Kai,HUO Dehong. Micro-cutting:fundamentals and applications[M]. Chichester:John Wiley & Sons,Ltd,2013:15-16. [4] GOEL S,LUO Xichun,AGRAWAL A,et al. Diamond machining of silicon:A review of advances in molecular dynamics simulation[J]. International Journal of Machine Tools and Manufacture,2015,88:131-164. [5] KONG Lingbao,CHEUNG Chifai,Modeling and characterization of surface generation in fast tool servo machining of microlens arrays[J]. Computers & Industrial Engineering,2012,63(4):957-970. [6] OOMEN J,EISSES J. Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals[J]. Precision Engineering,1992,14(4):206-218. [7] HURT H,DECKER D. Tribological considerations of the diamond single-point tool[C]//Proceedings of Production Aspects of Single Point Machined Optics. San Diego,1984:126-131. [8] LANE B. Development of predictive models for abrasive and chemical wear of diamond tools[D]. Raleigh:North Carolina State University,2010. [9] YAMAGUCHI T,HIGUCHI M,SHIMADA S,Et al. Scientific screening of raw diamond for an ultraprecision cutting tool with high durability[J]. CIRP Annals-Manufacturing Technology,2006,55(1):71-74. [10] YUAN Zhejun,HE Jicheng,YAO Yingxue. The optimum crystal plane of natural diamond tool for precision machining[J]. CIRP Annals-Manufacturing Technology,1992,41(1):605-608. [11] CASEY M,WILKS J. Some experiments to study turning tools using the scanning electron microscope[J]. International Journal of Machine Tool Design and Research,1976,16(1):13-22. [12] DURAZO-CARDENAS I,SHORE P,LUO Xichun,et al. 3D characterisation of tool wear whilst diamond turning silicon[J]. Wear,2007,262(3-4):340-349. [13] JIA Peng,ZHOU Ming. Tool wear and its effect on surface roughness in diamond cutting of glass soda-lime[J]. Chinese Journal of Mechanical Engineering,2012,25(6):1224-1230. [14] YAN Jiwang,ZHANG Zhiyu,KURIYAGAWA T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide[J]. International Journal of Machine Tools and Manufacture,2009,49(5):366-374. [15] GOEL S,LUO Xichun,COMLEY P,et al. Brittle-ductile transition during diamond turning of single crystal silicon carbide[J]. International Journal of Machine Tools and Manufacture,2013,65:15-21. [16] YAN Jiwang,SYOJI K,TAMAKI J. Some observations on the wear of diamond tools in ultra-precision cutting of single-crystal silicon[J]. Wear,2003,255(7-12):1380-13 87. [17] FANG Fengzhou,LIU Xiangdong,LEE L. Micro-machining of optical glasses-A review of diamond-cutting glasses[J]. Sadhana,2003,28(5):945-955. [18] SONG Youngchan,NEZU K,PARK C,et al. Tool wear control in single-crystal diamond cutting of steel by using the ultra-intermittent cutting method[J]. International Journal of Machine Tools and Manufacture,2009,49(3-4):339-343. [19] WANG Yilong,SUZUKI N,SHAMOTO E,et al. Investigation of tool wear suppression in ultraprecision diamond machining of die steel[J]. Precision Engineering,2011,35(4):677-685. [20] 许剑锋,黄凯,郑正鼎,等. 难加工材料场辅助超精密加工研究[J]. 中国科学:技术科学,2022,52:829-853 XU Jianfeng,HUANG Kai,ZHENG Zhengding,et al. Review of field-assisted ultraprecision machining difficult-to-machine materials[J]. Scientia Sinica(Technologica),2022,52:829-853 [21] YOU Kaiyuan,YAN Guangpeng,LUO Xichun,et al. Advances in laser assisted machining of hard and brittle materials[J]. Journal of Manufacturing Processes,2020,58:677-692. [22] LI Zhanjie,FANG Fengzhou,GONG Hu,et al. Review of diamond-cutting ferrous metals[J]. The International Journal of Advanced Manufacturing Technology,2013,68(5):1717-1731. [23] 陆世英,张廷凯,杨长强. 不锈钢[M]. 北京:原子能出版社,1995. LU Shiying,ZHANG Tingkai,YANG Changqiang. Stainless steel[M]. Beijing:Atomic Energy Press,1995. [24] EVANS C,BRYAN J. Cryogenic diamond turning of stainless steel[J]. CIRP Annals-Manufacturing Technology,1991,40(1):571-575. [25] ZOU Lai,YIN Jiachao,HUANG Yun,et al. Essential causes for tool wear of single crystal diamond in ultra-precision cutting of ferrous metals[J]. Diamond and Related Materials,2018,86:29-40. [26] LI Jinnian,YUAN Zhejun,Ultra-precision machinability of ferrous metals with diamond tools[J]. Journal of Harbin Institute of Technology,1987,1:133-134. [27] 李晋年,袁哲俊,周明. 黑色金属的超低温金刚石超精密切削[J]. 机械工程学报,1989,25(1):69-72. LI Jinnian,YUAN Zhejun,ZHOU Ming. Cryogenic ultra-precision machining of ferrous metals with natural diamond tools[J]. Journal of Mechanical Engineering,1989,25(1):69-72 [28] SONG Youngchan,PARK C,MORIWAKI T. Mirror finishing of Co-Cr-Mo alloy using elliptical vibration cutting[J]. Precision Engineering,2010,34(4):784-789. [29] CASSTEVENS J M. Diamond turning of steel in carbon- saturated atmospheres[J]. Precision Engineering,1983 5(1):9-15. [30] HITCHINER M P,WILKS J. Factors affecting chemical wear during machining[J]. Wear,1984,93(1):63-80. [31] HITCHINER M P,WILKS J. Some remarks on the chemical wear of diamond and cubic BN during turning and grinding[J]. Wear,1987,114:327-338. [32] BRINKSMEIER E,PREUSS W,GLAEBE R. Single point diamond turning of steel[C]//Proceedings of the 1st International Eurpean Conference,Bremen,1999:446- 449. [33] HUANG Shuai,LIU Xin,CHEN Faze,et al. Diamond-cutting ferrous metals assisted by cold plasma and ultrasonic elliptical vibration[J]. International Journal of Advanced Manufacturing Technology,2016,85(1):673-681. [34] XU Wenji,HUANG Shuai,CHEN Faze,et al. Diamond wear properties in cold plasma jet[J]. Diamond and Related Materials,2014,48:96-103. [35] MORIWAKI T,SHAMOTO E,et al. Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration[J]. Journal of the Japan Society for Precision Engineering,1991,57(11):1983-1988. [36] KUMABE J. Vibration Cutting[M]. Tokyo:Jikkyou Publishing Corporation,1979:23-24. [37] OVERCASH J,CUTTINO J. Design and experimental results of a tunable vibration turning device operating at ultrasonic frequencies[J]. Precision Engineering,2009,33:127-134. [38] SHAMOTO E,MORIWAKI T. Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting[J]. CIRP Annals-Manufacturing Technology,1999,48(1):441-444. [39] SHAMOTO E,MORIWAKI,T. Study on elliptical vibration cutting[J]. CIRP Annals-Manufacturing Technology,1994,43(1):35-38. [40] BULLA B,KLOCKE F,DAMBON O,et al. Influence of different steel alloys on the machining results in ultrasonic assisted diamond turning[J]. Key Engineering Materials,2012,523:203-208. [41] SHAMOTO E,MORIWAKI T. Ultaprecision diamond cutting of hardened steel by applying elliptical vibration cutting[J]. CIRP Annals-Manufacturing Technology,1999,48(1):441-444. [42] KLOCKE F,DAMBON O,BULLA B. Direct diamond turning of aspheric steel moulds in ultraprecise accuracy[C]//Proceeding of the 25th Annual Meeting of the ASPE. Atlanta,USA:ASPE,2010. [43] KLOCKE F,DAMBON O,BULLA B. Tooling system for diamond turning of hardened steel moulds with apsheric or non rotational symmetrical geometries[C]//Proceedings of the 11th International Europe Conference. Como,Italy,2011. [44] BULLA B,KLOCKE F,DAMBON O,et al. Ultrasonic assisted diamond turning of hardened steel for mould manufacturing[C]//Key Engineering Materials. Switzerland:Trans Tech Publications Ltd,2012:437-442. [45] KLOCKE F,DAMBON O,BULLA B. Ultrasonic assisted diamond turning of hardened steel with mono- crystalline diamond[C]//Proceedings of the 10th International Euspen Conference. Zürich,Switzerland,2008:165-169. [46] MORIWAKI T. Development of 2DOF ultrasonic vibration cutting device for ultraprecision elliptical vibration cutting[J]. Key Engineering Materials,2010,447:164-168. [47] GAN J,WANG X,ZHOU Ming,et al. Ultraprecision diamond turning of glass with ultrasonic vibration[J]. International Journal of Advanced Manufacturing Technology,2003,21(12):952-955. [48] SHIMADA S,TANAKA H,HIGUCHI M,et al. Thermo- chemical wear mechanism of diamond tool in machining machining of ferrous metals[J]. CIRP Annals-Manufacturing Technology,2004,53(1):57-60. [49] WANG Yilong,SUZUKI N,SHAMOTO E,et al. Investigation of tool wear suppression in ultraprecision diamond machining of die steel[J]. Precision Engineering,2011,35(4):677-685. [50] ZHANG Xinquan,DENG Hui,LIU Kui. Oxygen-shielded ultrasonic vibration cutting to suppress the chemical wear of diamond tools[J]. CIRP Annals-Manufacturing Technology,2019,68(1):69-72. [51] NI Hao,WANG Yi,GONG Hu,et al. A novel free-form transducer for the ultra-precision diamond cutting of die steel[J]. International Journal of Advanced Manufacturing Technology,2018,95(5-8):2185-2192. [52] KIM H,KIM S,LEE K,et al. Development of a programmable vibration cutting tool for diamond turning of hardened mold steels[J]. International Journal of Advanced Manufacturing Technology,2009,40(1):26-40. [53] ZOU Lai,HUANG Yun,ZHOU Ming,et al. Investigation on diamond tool wear in ultrasonic vibration-assisted turning die steels[J]. Materials and Manufacturing Processes,2017,32(13):1505-1511. [54] ZHANG Jianguo,SUZUKI N,WANG Yilong,et al. Fundamental investigation of ultra-precision ductile machining of tungsten carbide by applying elliptical vibration cutting with single crystal diamond[J]. Journal of Materials Processing Technology,2014,214(11):2644-2659. [55] ZOU Lai,ZHOU Ming. Finite element analysis of ultrasonic vibration assisted turning of ferrous metals[J]. Key Engineering Materials,2013,567:33-38. [56] ZHANG Gang,Method for extending diamond tool life in diamond machining of materials that chemically react with diamond:US7198043B1[P]. 2007-04-03. [57] MOHAMMADI H,RAVINDRA D,KODE S,et al. Experimental work on micro laser-assisted diamond turning of silicon(111)[J]. Journal of Manufacturing Processes,2015,19:125-128. [58] SHAHINIAN H,NAVARE J,ZAYTSEV D,et al. Microlaser assisted diamond turning of precision silicon optics[J]. Optical Engineering,2019,58(9):092607-1-092607-8. [59] MOHAMMADI H,POYRAZ H,RAVINDRA D,et al. Surface finish improvement of an unpolished silicon wafer using micro-laser assisted machining[J]. International Journal of Abrasive Technology,2015,7(2):107. [60] MOHAMMADI H,POYRAZ H,RAVINDRA D,et al. Single point diamond turning of silicon by using micro-laser assisted machining technique[C]//Proceedings of the International Manufacturing Science and Engineering Conference. Detroit,USA:ASME,2014:V002T02A057. [61] LANGAN M,RAVINDRA D,MANN A. Process parameter effects on residual stress and phase purity after microlaser-assisted machining of silicon[J]. Materials & Manufacturing Processes,2018:1-9. [62] MOHAMMADI H,POYRAZ H B,RAVINDRA D,et al. An experimental study on single point diamond turning of an unpolished silicon wafer via micro-laser assisted machining[J]. Advanced Materials Research,2014,1017:175-180. [63] RAVINDRA D,PATTEN J. Micro-laser assisted single point diamond turning feasibility tests of single crystal silicon[C]//American Society for Precision Engineers 28th Annual Meeting. St. Paul,Minnesota,2013:24-28. [64] SHAHINIAN H,NAVARE J,ZAYTSEV D,et al. Microlaser assisted diamond turning of precision silicon optics[J]. Optical Engineering,2019,58(9):092607. [65] PATTEN J,GHANTASALA M,RAVINDRA D,et al. The effects of laser heating on the material removal process in Si and SiC nanomachining[C]//Proceedings of Engineering Research and Innovation Conference. Atlanta,Georgia,USA:NSF,2011:4-7. [66] SHAHINIAN H,NAVARE J,BODLAPATI C,et al. Micro laser assisted single point diamond turning of brittle and hard materials[C]//Laser Applications in Microelectronic and Optoelectronic Manufacturing XXV. San Francisco,USA:SPIE,2020:111-116. [67] SHAHINIAN H,NAVARE J,BODLAPATI C,et al. Micro-laser assisted single point diamond turning of fused silica glass[C]//Optifab. Rochester,USA:SPIE,2019:65-70. [68] RAVINDRA D,PATTEN J. Micro-laser assisted machining:The future of manufacturing ceramics and semiconductors[J]. Sensors & Materials,2014,26(6):417-427. [69] BODLAPATI C,KANG Di,NAVARE J,et al. Cutting performance of laser assisted diamond turning of calcium fluoride with different crystal orientations[J]. Applied Optics,2021,60(9):2465-2470. [70] VIRKAR S,PATTEN J. Thermal aspects of ductile mode micro laser assisted machining[C]//American Institute of Physics Conference Proceedings. Paris,France:AIP,2011:1119-1124. [71] VIRKAR S,PATTEN J. Numerical simulations and analysis of the thermal effects on silicon carbide during ductile mode micro-laser assisted machining[C]//Proceedings of the International Manufacturing Science and Engineering Conference. West Lafayette,USA:ASME,2009:409-416. [72] LANGAN S,RAVINDRA D,MANN A. Mitigation of damage during surface finishing of sapphire using laser-assisted machining[J]. Precision Engineering,2019,56:1-7. [73] MOHAMMADI H,PATTEN J. Effect of thermal softening on anisotropy and ductile mode cutting of sapphire using micro-laser assisted machining[J]. Journal of Micro and Nano-Manufacturing,2017,5(1):011007-1- 011007-7. [74] ZOU Lai,HUANG Yun,ZHOU Ming,et al. Effect of cryogenic minimum quantity lubrication on machinability of diamond tool in ultraprecision turning of 3Cr2NiMo steel[J]. Materials and Manufacturing Processes,2018,33(9):943-949. [75] ZHOU Menghua,ZHANG Guoqing,CHEN Ning. Effects of lubricant on cutting performance in single-point diamond turning of ferrous metal NAK 80[J]. International Journal of Advanced Manufacturing Technology,2020,109:2549-2558. [76] ZHOU Menghua,WANG Jianpeng,ZHANG Guoqing. Influence of lubricant environment on machined surface quality in single-point diamond turning of ferrous metal[J]. Micromachines,2021,12(9):1110. [77] LI Zhanjie,GONG Hu,HUANG Kuntao,et al. Cooling and lubricating effects on tool wear and surface quality in ultra-precision machining[J]. International Journal of Nanomanufacturing,2013,9(5-6):583-598. [78] BRINKSMEIER E,GLABE R,OSMER J. Ultra-precision diamond cutting of steel molds[J]. CIRP Annals-Manufacturing Technology,2006,55(1):551-554. [79] OSMER J,GLÄBE R,RIEMER O,et al. Ultraprecision machining of nitrocarburized steels[C]//5th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Dalian,China:SPIE,2010:133-136. [80] CHAO Chounglii,CHEN Chunchieh,CHANG Chiajong et al. Single-point diamond turning of plasma-nitrided stainless steel[J]. Key Engineering Materials,2008,364:601-606. [81] DAI Tengfei,FANG Fengzhou,HU Xiaotang. Tool wear study in diamond turning of steels[J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures,2009,27(3):1335-1339. [82] 李占杰,宫虎,佟伟平,等. 氮化铁材料的金刚石可切削性实验研究[J]. 天津大学学报,2014,47(9):785-789. LI Zhanjie,GONG Hu,TONG Weiping,et al. Experimental study of diamond turnability of iron nitride[J]. Journal of Tianjin University,2014,47(9):785-789. [83] OSMER J,GLBE R,BRINKSMEIER E. Chip formation in ultra-precision machining of nitrocarburized steels[J]. Key Engineering Materials,2012,516:293-298. [84] WANG Jinshi,ZHANG Xiaodong,FANG Fengzhou,et al. Diamond cutting of micro-structure array on brittle material assisted by multi-ion implantation[J]. International Journal of Machine Tools and Manufacture,2019,137:58-66. [85] WANG Jinshi,ZHANG Xiaodong,FANG Fengzhou. Molecular dynamics study on nanometric cutting of ion implanted silicon[J]. Computational Materials Science,2016,117:240-250. [86] FANG Fengzhou,CHEN Yunhui,ZHANG Xiaodong,et al. Nanometric cutting of single crystal silicon surfaces modified by ion implantation[J]. CIRP Annals-Manufacturing Technology,2011,60(1):527-530. [87] FANG Fengzhou,Venkatesh V. Diamond cutting of silicon with nanometric finish[J]. CIRP Annals-Manufacturing Technology,1998,47(1):45-49. [88] WANG Jinshi,FANG Fengzhou,ZHANG Xiaodong. An experimental study of cutting performance on monocrystalline germanium after ion implantation[J]. Precision Engineering,2015,39:220-223. [89] WANG Jinshi,FANG Fengzhou,ZHANG Xiaodong. Nanometric cutting of silicon with an amorphous-crystalline layered structure:A molecular dynamics study[J]. Nanoscale Research Letters,2017,12(1):1-10. [90] CHEN Yuhan,WANG Jun,CHEN Ming. Enhancing the machining performance by cutting tool surface modifications:A focused review[J]. Machining Science & Technology,2019,23(3):477-509. [91] MACHADO A,SILVA L,SOUZA F,et al. State of the art of tool texturing in machining[J]. Journal of Materials Processing Technology,2021,293:117096. [92] MASUDA M. Ultraprecision cutting of steel with CBN tools[J]. Journal of the Japan Society for Precision Engineering,1986,52(12):2024-2027. [93] DING Xin,LIEW W,NGOI B,et al. Wear of CBN tools in ultra-precision machining of STAVAX[J]. Tribology Letters,2002,12(1):3-12. [94] LIEW W,NGOI B,LU Y. Wear characteristics of PCBN tools in the ultra-precision machining of stainless steel at low speeds[J]. Wear,2003,254(3-4):265-277. [95] Wu Rong,Tauhiduzzaman M,Selvaganapathy P. Anisotropic wetting surfaces machined by diamond tool with tips microstructured by focused ion beam[J]. Materials & Design,2021,210:110014. [96] KAWASEGI N,OZAKI K,MORITA N,et al. Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment[J]. Precision Engineering,2017,47:311-320. [97] KAWASEGI N,KAWASHIMA T,MORITA N,et al. Effect of texture shape on machining performance of textured diamond cutting tool[J]. Precision Engineering,2019,60:21-27. [98] WANG Qingwei,YANG Ye,YAO Peng,et al. Friction and cutting characteristics of micro-textured diamond tools fabricated with femtosecond laser[J]. Tribology International,2021,154:106720. [99] STOCK H,SCHLETT V,et al. Characterization and mechanical properties of ion-implanted diamond surfaces[J]. Surface and Coatings Technology,2001,146-147(1):425-429. [100] GLTZ G,FERNANDEZ R,NICOLET M,et al. Metastable materials formation by ion implantation[M]. New York:North-Holland,1982. [101] ZHANG Guoliang. Ion implantation of diamond dies[J]. Wire Industry,1985,52:314-317. [102] KAWASEGI N,OZAKI K,MORITA N,et al. Single-crystal diamond tools formed using a focused ion beam:Tool life enhancement via heat treatment[J]. Diamond and Related Materials,2014,49:14-18. [103] KAWASEGI N,NIWATA T,MORITA N,et al. Improving machining performance of single-crystal diamond tools irradiated by a focused ion beam[J]. Precision Engineering,2014,38(1):174-182. [104] KAWASEGI N,OZAKI K,MORITA N,et al. Removal of ion irradiation-induced affected layers from diamond cutting tools to improve machining performance[J]. Advanced Materials Research,2014,1017:479-484. [105] LEE Yanjin,Li Hao,LÜDER J,et al. Micromachining of ferrous metal with an ion implanted diamond cutting tool[J]. Carbon,2019,152:598-608. [106] LU Jingrui,KOU Zili,LIU Teng,et al. Submicron binderless polycrystalline diamond sintering under ultra-high pressure[J]. Diamond and Related Materials,2017,77:41-45. [107] IRIFUNE T,KURIO A,SAKAMOTO S,et al. Materials:Ultrahard polycrystalline diamond from graphite[J]. Nature,2003,421 (6923):599. [108] YAN Chihshiue,MAO Hokwang,LI Wei,et al. Ultrahard diamond single crystals from chemical vapor deposition[J]. Physica Status Solidi (A),2004,201(4):25-27. [109] SUMIYA H,IRIFUNE T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature[J]. Journal of Material Research,2007,22 (8):2345-2351. [110] GUILLOU C,BRUNET F,IRIFUNE T,et al. Nanodiamond nucleation below 2273 K at 15 GPa from carbons with different structural organizations[J]. Carbon,2007,45 (3):636-648. [111] TANG Hu,WANG Mingzhi,HE Duanwei,et al. Synthesis of nano-polycrystalline diamond in proximity to industrial conditions[J]. Carbon,2016,108:1-6. [112] SUMIYA H,IKEDA K,ARIMOTO K,et al. High wear-resistance characteristic of boron-doped nano-polycrystalline diamond on optical glass[J]. Diamond and Related Materials,2016,70:7-11. [113] HUANG Quan,YU Dongli,XU Bo,et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature,2014,510 (7504):250-253. [114] TAO Qiang,WEI Xin,LIAN Min,et al. Nanotwinned diamond synthesized from multicore carbon onion[J]. Carbon,2017,120:405-410. [115] CORRIGAN F,BUNDY F. Direct transitions among the allotropic forms of boron nitride at high pressures and temperatures[J]. The Journal of Chemical Physics,1975,63 (9):3812. [116] SUMIYA H,UESAKA S,SATOH S. Mechanical properties of high purity polycrystalline cBN synthesized by direct conversion sintering method[J]. Journal of Material Science,2000,35 (5):1181-1186. [117] DUB S,PETRUSHA I. Mechanical properties of polycrystalline cBN obtained from pyrolytic gBN by direct transformation technique[J]. High Pressure Research,2006,26 (2):71-77. [118] TANIGUCHI T,AKAISHI M,YAMAOKA S. Sintering of cubic boron nitride without additives at 7.7 GPa and above 2000℃[J]. Journal of Materials Research,1997,14 (1):162-169. [119] DUBROVINSKAIA N,SOLOZHENKO V,MIYAJIMA N. Superhard nanocomposite of dense polymorphs of boron nitridenoncarbon material has reached diamond hardness[J]. Applied Physics Letters,2007,90:1-3. [120] TIAN Yongjun,XU Bo,YU Dongli,et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature,2013,493 (7432):385-388. [121] ZHANG Shuangshuang,LI Zihe,LUO Kun,et al. Discovery of carbon-based strongest and hardest amorphous material[J]. National Science Review,2022,9(1):25-35. [122] SHANG Yuchen,LIU Zhaodong,DONG Jiajun,et al. Ultrahard bulk amorphous carbon from collapsed fullerene[J]. Nature,2021,599(7886):599-604. [123] TANG Hu,YUAN Xiaohong,CHENG Yong,et al. Synthesis of paracrystalline diamond[J]. Nature,2021,599(7886):605-610. [124] CHEN Junyun,JIN Tianye,WANG Jinhu,et al. Study on machining mechanism of nanotwinned CBN cutting tool[C]//7th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Harbin,China:SPIE,2014:307-313. [125] 靳田野,陈俊云,赵明慧,等. 纳米孪晶立方氮化硼机械研磨机理研究[J]. 机械工程学报,2016,52(5):95-100. JIN Tianye,CHEN Junyun,ZHAO Minghui,et al. Study on mechanical grinding mechanism of nano twin crystal cubic boron nitride[J]. Journal of Mechanical Engineering,2016,52(5):5-100. [126] WANG Jinhu,CHEN Junyun,JIN Tianye,et al. Preparation of nanotwinned cBN cutting edge by combining mechanical lapping and ion beam polishing[J]. Diamond and Related Materials,2020,105:107801. [127] 靳田野,陈俊云,王金虎,等. 纳米孪晶立方氮化硼的飞秒激光材料去除机理[J]. 机械工程学报,2019,55(9):198-205. JIN Tianye,CHEN Junyun,WANG Jinhu,et al. Material removal mechanism of nanotwinned cubic boron nitride by femtosecond laser ablation[J]. Journal of Mechanical Engineering,2019,55(9):198-205. [128] JIN Tianye,MA Mengdong,LI Baozhong,et al. Mechanical polishing of ultrahard nanotwinned diamond via transition into hard sp2-sp3 amorphous carbon[J]. Carbon,2020,161:1-6. [129] JIN Tianye,CHEN Junyun,ZHAO Qingliang,et al. Nanotwinned diamond cutting tool processed by femtosecond pulsed laser milling with trochoidal trajectory[J]. Journal of Materials Processing Technology,2021,294:117115. |
[1] | 温秋玲, 杨野, 黄辉, 黄国钦, 胡中伟, 陈金鸿, 汪晖, 吴贤. 激光复合加工硬脆性材料研究进展综述[J]. 机械工程学报, 2024, 60(9): 168-188. |
[2] | 李晗, 章程, 陈杰, 安庆龙, 陈明. SiCf/SiC复合材料激光烧蚀辅助铣削材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 206-217. |
[3] | 江安娜, 言兰, 王宁昌, 姜峰, 李卓, 温秋玲, 卢希钊, 黄辉. 能量场辅助激光诱导等离子体加工透明硬脆材料的研究现状及发展趋势[J]. 机械工程学报, 2024, 60(9): 254-272. |
[4] | 赖旭伟, 丁昆, 张楷, 黄锋飞, 郑庆, 李致萱, 丁国富. 基于可解释物理引导空间注意力改进的跨工艺参数立铣刀磨损辨识[J]. 机械工程学报, 2024, 60(12): 147-157. |
[5] | 王润琼, 宋清华, 彭业振, 刘战强. 基于特征自适应融合和集成学习的高性能铣削刀具状态监测[J]. 机械工程学报, 2024, 60(1): 149-158. |
[6] | 黄景山, 刘国亮, 孙浩, 姚斌, 金林, 陈彬强, 曹新城, 王山城, 许浩, 蔡志钦. C60纳米粒子切削液对15Cr14Co12Mo5Ni2WA齿轮钢切削特性的影响研究[J]. 机械工程学报, 2023, 59(23): 358-371. |
[7] | 贾振元, 付饶, 王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报, 2023, 59(19): 348-374. |
[8] | 潘鑫, 彭瑞轩, 张皓宇, 吴海琦, 高金吉. 高端机械装备新型电磁式自动平衡系统研究[J]. 机械工程学报, 2023, 59(18): 3-12. |
[9] | 刘洪成, 袁德志, 朱锟鹏. 基于高斯过程潜力模型的刀具磨损预测[J]. 机械工程学报, 2023, 59(17): 310-324. |
[10] | 王红, 王兵, 刘战强, 赵金富, 宋清华. 表层改性处理改善难加工材料切削加工性的研究进展[J]. 机械工程学报, 2023, 59(15): 311-332. |
[11] | 段暕, 周宏娣, 刘智勇, 詹小斌, 梁健强, 史铁林. 基于改进PCANet模型的铣刀磨损预测方法研究[J]. 机械工程学报, 2023, 59(1): 278-285. |
[12] | 滕洪钊, 邓朝晖, 吕黎曙, 谷倩微, 刘涛, 卓荣锦. 多传感器信息融合的加工过程状态监测研究[J]. 机械工程学报, 2022, 58(6): 26-41. |
[13] | 卢守相, 杨秀轩, 张建秋, 周聪, 殷景飞, 张璧. 关于硬脆材料去除机理与加工损伤的理性思考[J]. 机械工程学报, 2022, 58(15): 31-45. |
[14] | 赵国龙, 夏宏军, 李亮, 信连甲, 何宁. 激光诱导可控氧化辅助微细铣削TiAl金属间化合物的研究[J]. 机械工程学报, 2021, 57(9): 254-263. |
[15] | 李聪波, 余必胜, 肖溱鸽, 孙鑫, 吕岩. 考虑刀具磨损的数控车削批量加工工艺参数节能优化方法[J]. 机械工程学报, 2021, 57(1): 217-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||