机械工程学报 ›› 2023, Vol. 59 ›› Issue (7): 2-17.doi: 10.3901/JME.2023.07.002
孔琳1,2, 李方义1,2,3, 王黎明1,2,3, 周家璇1,2, 蔡泽康1,2, 马艳1,2
收稿日期:
2022-05-17
修回日期:
2022-07-08
出版日期:
2023-04-05
发布日期:
2023-06-16
通讯作者:
李方义(通信作者),男,1969年出生,博士,教授,博士研究生导师。主要研究方向为绿色设计和制造、生命周期评价、再制造方法和技术。E-mail:lifangyi@sdu.edu.cn
作者简介:
孔琳,女,1992年出生,博士研究生。主要研究方向为低碳设计、生命周期评估、决策优化。E-mail:konglin@mail.sdu.edu.cn;王黎明,男,1986年出生,博士,副教授,硕士研究生导师。主要研究方向为绿色设计与制造。E-mail:liming_wang@sdu.edu.cn;周家璇,女,1999年出生,硕士研究生。主要研究方向为绿色设计、多准则决策。E-mail:zhoujiaxuan@mail.sdu.edu.cn;蔡泽康,男,1999年出生,硕士研究生。主要研究方向为低碳设计、冲突消解。E-mail:caizekang@mail.sdu.edu.cn;马艳,女,1993年出生,博士研究生。主要研究方向为绿色设计与制造、生命周期评价。E-mail:mayan2020@mail.sdu.edu.cn
基金资助:
KONG Lin1,2, LI Fangyi1,2,3, WANG Liming1,2,3, ZHOU Jiaxuan1,2, CAI Zekang1,2, MA Yan1,2
Received:
2022-05-17
Revised:
2022-07-08
Online:
2023-04-05
Published:
2023-06-16
摘要: 温室气体(GHGs)排放是全球气候问题日益严重的重要原因,成为人类社会面临的共同挑战。产品设计阶段对其生命周期的环境产生重要影响,低温室气体排放产品的设计和开发对于缓解气候变化至关重要。聚焦于产品方案低碳设计的“设计-评价-再设计”过程,围绕产品方案的低碳设计信息建模、碳足迹评估、低碳决策优化以及低碳设计工具开发四个方面,分析了其研究的现状与应用场景。针对现有产品方案低碳设计研究存在的设计信息关联难集成、清单数据动态难获取、设计信息海量难优化、设计工具分散难融合等问题,提出了产品方案低碳设计的发展愿景和研究方向:1) 复杂映射关联机制下的设计信息集成建模,2) 融合设计场景的碳足迹评估策略,3) 低碳设计多目标、多阶段智能决策优化方法,以及4) 低碳设计集成工具开发。
中图分类号:
孔琳, 李方义, 王黎明, 周家璇, 蔡泽康, 马艳. 产品方案低碳设计研究综述与展望[J]. 机械工程学报, 2023, 59(7): 2-17.
KONG Lin, LI Fangyi, WANG Liming, ZHOU Jiaxuan, CAI Zekang, MA Yan. Overview and Prospects of Low Carbon Design of Products[J]. Journal of Mechanical Engineering, 2023, 59(7): 2-17.
[1] HAN H, QIAO Q,LIU Z,et al. Comparing the life cycle greenhouse gas emissions from vehicle production in China and the USA:Implications for targeting the reduction opportunities[J]. Clean Technologies and Environmental Policy,2017,19(5):1509-1522. [2] MATEMILOLA S,FADEYI O,SIJUADE T. Paris agreement[EB]. 2016-11-04. https://www.un.org/en/climatechange/paris-agreement. [3] United Nations Framework Convention on Climate Change (Organization). Kyoto protocol to the United Nations framework convention on climate change[J]. Review of European Comparative & International Environmental Law,2010,7(2):214-217. [4] LAU L C,LEE K T,MOHAMED A R. Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord-A comment[J]. Renewable & Sustainable Energy Reviews,2012,16(7):5280-5284. [5] TIAN Y,XIONG S,MA X,et al. Structural path decomposition of carbon emission:A study of China's manufacturing industry[J]. Journal of Cleaner Production,2018,193:563-574. [6] TIAN C,ZHOU G,ZHANG J,et al. Optimization of cutting parameters considering tool wear conditions in low-carbon manufacturing environment[J]. Journal of Cleaner Production,2019,226:706-719. [7] MA Y,LI F,WANG L,et al. Life cycle carbon emission assessments and comparisons of cast iron and resin mineral composite machine tool bed in China[J]. The International Journal of Advanced Manufacturing Technology,2021,113(11):1143-1152. [8] DOWLATSHAHI S. Product design in a concurrent engineering environment:An optimization approach[J]. International Journal of Production Research,2007,30(8):1803-1818. [9] ZHANG L,JIANG R,JIN Z F,et al. CAD-based identification of product low-carbon design optimization potential:A case study of low-carbon design for automotive in China[J]. International Journal of Advanced Manufacturing Technology,2018. [10] 徐兴硕,李方义,周丽蓉,等. 产品低碳设计研究现状与发展趋势[J]. 计算机集成制造系统,2016,22(7):1609-1618. XU Xingshuo,LI Fangyi,ZHOU Lirong,et al. Status and future trends research on low carbon design[J]. Computer Integrated Manufacturing Systems,2016,22(7):1609-1618. [11] 彭鑫,李方义,王黎明,等. 产品低碳设计方法研究进展[J]. 计算机集成制造系统,2018,24(11):2846-2856. PENG Xin,LI Fangyi,WANG Liming,et al. Research progress of low-carbon design method for products[J]. Computer Integrated Manufacturing Systems,2018,24(11):2846-2856. [12] HE B,ZHANG D,GU Z,et al. Skeleton model-based product low carbon design optimization[J]. Journal of Cleaner Production,2020,264:121687. [13] FLORINDO T J,FLORINDO G I B D M,TALAMINI E,et al. Application of the multiple criteria decision-making approach in the identification of carbon footprint reduction actions in the Brazilian beef production chain[J]. Journal of Cleaner Production,2018,196:1379-1389. [14] 张秀芬. 复杂产品可拆卸性分析与低碳结构进化设计技术研究[D]. 杭州:浙江大学,2011. ZHANG Xiufen. Complex product disassemblability analysis and structure design for low-carbon[D]. Hangzhou:Zhejiang University,2011. [15] 孙良峰,裘乐淼,张树有,等. 面向低碳化的复杂产品材料回收策略模型及应用[J]. 机械工程学报,2013,49(11):143-152. SUN Liangfeng,QIU Lemiao,ZHANG Shuyou,et al. Material recycling model of complex products and its application for green material selection[J]. Journal of Mechanical Engineering,2013,49(11):143-152. [16] 李育锋,何彦,黄桃,等. 考虑产品制造过程环境影响的轻量化设计方法[J]. 计算机集成制造系统,2018,24(9):2306-2313. LI Yufeng,HE Yan,HUANG Tao,et al. Lightweight design method considering environmental impacts in products manufacturing stage[J]. Computer Integrated Manufacturing Systems,2018,24(9):2306-2313. [17] HU L,TANG R,HE K,et al. Estimating machining-related energy consumption of parts at the design phase based on feature technology[J]. International Journal of Production Research,2015,53(23-24):7016-7033. [18] KONG L,WANG L,LI F,et al. Multi-layer integration framework for low carbon design based on design features[J]. Journal of Manufacturing Systems,2021,61:223-238. [19] ZHOU G,ZHOU C,LU Q,et al. Feature-based carbon emission quantitation strategy for the part machining process[J]. International Journal of Computer Integrated Manufacturing,2017,31(4-5):406-425. [20] LI C,LI P,LIU F,et al. Multi-objective NC machining parameters optimization model for high efficiency and low carbon[J]. Journal of Mechanical Engineering,2014,49(9):87. [21] 孙良峰,裘乐淼,张树有,等. 面向低碳化设计的复杂装备碳排放分层递阶模型[J]. 计算机集成制造系统,2012,18(11):2381-2390. SUN Liangfeng,QIU Lemiao,ZHANG Shuyou,et al. Carbon emission hierarchical model of complex equipment for low-carbon design[J]. Computer Integrated Manufacturing Systems,2012,18(11):2381-2390. [22] KONG L,WANG L M,LI F Y,et al. A life-cycle integrated model for product eco-design in the conceptual design phase[J]. Journal of Cleaner Production,2022,363:132516. [23] 鲍宏,胡迪,张城,等. 基于进化潜力分析的产品低碳创新设计[J]. 计算机集成制造系统,2018,24(8):2053-2060. BAO Hong,HU Di,ZHANG Cheng,et al. Innovative design method for low-carbon product based on evolution potential analysis[J]. Computer Integrated Manufacturing Systems,2018,24(8):2053-2060. [24] WANG G,LI F,ZHAO F,et al. A product carbon footprint model for embodiment design based on macro-micro design features[J]. The International Journal of Advanced Manufacturing Technology,2021,116(2):3839-3857. [25] HE B,WANG J,HUANG S,et al. Low-carbon product design for product life cycle[J]. Journal of Engineering Design,2015,26(10-12):321-339. [26] PENG J,LI W,LI Y,et al. Innovative product design method for low-carbon footprint based on multi-layer carbon footprint information[J]. Journal of Cleaner Production,2019,228:729-745. [27] LIU J,HUANG Z,WANG X. Economic and environmental assessment of carbon emissions from demolition waste based on LCA and LCC[J]. Sustainability,2020,12(16):1-12. [28] ISLAM S,PONNAMBALAM S G,LAM H L. Review on life cycle inventory:Methods,examples and applications[J]. Journal of Cleaner Production,2016,136:266-278. [29] LINKE B S,DORNFELD D A. Application of axiomatic design principles to identify more sustainable strategies for grinding[J]. Journal of Manufacturing Systems,2012,31(4):412-419. [30] XIAO R,ZHANG Y,LIU X,et al. A life-cycle assessment of household refrigerators in China[J]. Journal of Cleaner Production,2015,95:301-310. [31] WANG F,DENG Y,YUAN C. Life cycle assessment of lithium oxygen battery for electric vehicles[J]. Journal of Cleaner Production,264:121339. [32] FILLETI R,LOPES SILVA D A,DA SILVA E J,et al. Productive and environmental performance indicators analysis by a combined LCA hybrid model and real-time manufacturing process monitoring:A grinding unit process application[J]. Journal of Cleaner Production,2017,161:510-523. [33] KARKA P,PAPADOKONSTANTAKIS S,KOKOSSIS A. Environmental impact assessment of biomass process chains at early design stages using decision trees[J]. The International Journal of Life Cycle Assessment,2019,24(9):1675-1700. [34] CAMPITELLI A,CRISTOBAL J,FISCHER J,et al. Resource efficiency analysis of lubricating strategies for machining processes using life cycle assessment methodology[J]. Journal of Cleaner Production,2019,222:464-475. [35] HE B,TANG W,HUANG S,et al. Low-carbon conceptual design based on product life cycle assessment[J]. The International Journal of Advanced Manufacturing Technology,2015,81(5-8):863-874. [36] 曹华军,李洪丞,宋胜利,等. 基于生命周期评价的机床生命周期碳排放评估方法及应用[J]. 计算机集成制造系统,2011,17(11):2432-2437. CAO Huajun,LI Hongcheng,SONG Shengli,et al. Evaluation method and application for carbon emissions of machine tool based on life cycle assessment[J]. Computer Integrated Manufacturing Systems,2011,17(11):2432-2437. [37] SHOAIB U H S,ROCI M,ASIF F,et al. Analyzing temporal variability in inventory data for life cycle assessment:Implications in the context of circular economy[J]. Sustainability,2021,13(1):344. [38] YU S,TAO J. Economic,energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation[J]. Applied Energy,2009,86:178-188. [39] ZHANG Y,LUO X,BUIS J J,et al. LCA-oriented semantic representation for the product life cycle[J]. Journal of Cleaner Production,2015,86:146-162. [40] AISAREJI O J,GRMASHA R A. A sustainable approach of toaster by using simplified life cycle assessment:A case study[J]. International Journal of Advanced Science and Technology,2020,29:5910-5919. [41] DANILECKI K,MROZIK M,SMURAWSKI P. Changes in the environmental profile of a popular passenger car over the last 30 years-Results of a simplified LCA study[J]. Journal of Cleaner Production,2017,141:208-218. [42] 任设东. 面向产品低碳设计的可拓知识演化方法研 究[D]. 杭州:浙江工业大学,2018. REN Shedong. Extension knowledge evolution method for product low-carbon design[D]. Hangzhou:Zhejiang University of Technology,2018. [43] 马艳,李方义,王黎明,等. 基于多层级数据分配的机床生命周期环境影响评价[J]. 计算机集成制造系统,2021,27(3):757-769. MA Yan,LI Fangyi,WANG Liming,et al. Life cycle environmental impact assessment of machine tool based on multi-level data distribution[J]. Computer Integrated Manufacturing Systems,2021,27(3):757-769. [44] ZHANG X,ZHANG S,HU Z,et al. Identification of connection units with high GHG emissions for low-carbon product structure design[J]. Journal of Cleaner Production,2012,27:118-125. [45] HE Y,HAO C,WANG Y,et al. An ontology-based method of knowledge modelling for remanufacturing process planning[J]. Journal of Cleaner Production,2020,258:120952. [46] JEONG M G,MORRISON J R,SUH H W. Approximate life cycle assessment via case-based reasoning for eco-design[J]. IEEE Transactions on Automation Science and Engineering,2015,12(2):716-728. [47] ZHOU D,XUAN D. Combining granular computing and RBF neural network for process planning of part features[J]. International Journal of Advanced Manufacturing Technology,2015,81(9):1447-1462. [48] ZHANG Y,REN S,LIU Y,et al. A framework for big data driven product lifecycle management[J]. Journal of Cleaner Production,2017,159:229-240. [49] ZHOU C,YIN G,HU X. Multi-objective optimization of material selection for sustainable products:Artificial neural networks and genetic algorithm approach[J]. Materials & Design,2009,30(4):1209-1215. [50] 任设东,赵燕伟,洪欢欢,等. 一种面向低碳设计的多属性相似实例检索方法[J]. 机械工程学报,2019,55(1):149-159. REN Shedong,ZHAO Yanwei,HONG Huanhuan,et al. A retrieval method for similar cases with multiple attributes in low-carbon design[J]. Journal of Mechanical Engineering,2019,55(1):149-159. [51] SAYYED A K,FARID B,NATHAN P. Optimized feed-forward neural networks to address CO2-equivalent emissions data gaps-Application to emissions prediction for unit processes of fuel life cycle inventories for Canadian provinces[J]. Journal of Cleaner Production,2022,332:130053. [52] MENG Q,LI F,ZHOU L R,et al. A rapid life cycle assessment method based on green features in supporting conceptual design[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2015,2(2):189-196. [53] BENETTO E,DUJET C,ROUSSEAUX P. Integrating fuzzy multicriteria analysis and uncertainty evaluation in life cycle assessment[J]. Environment Modeling and Software,2008,23(12):1461-1467. [54] PENG S,LI T,ZHAO J,et al. Petri net-based scheduling strategy and energy modeling for the cylinder block remanufacturing under uncertainty[J]. Robotics and Computer-Integrated Manufacturing,2019,58:208-219. [55] HONG J,SHAKED S,ROSENBAUM R K,et al. Analytical uncertainty propagation in life cycle inventory and impact assessment:Application to an automobile front panel[J]. International Journal of Life Cycle Assessment,2010,15(5):499-510. [56] WANG L,LI F,LI J,et al. Sensitivity and uncertainty analysis of life-cycle assessment based on multivariate regression analysis[C]//International Conference on Responsive Manufacturing-green Manufacturing. IET,2010. [57] XU C,TANG T,JIA H,et al. Benefits of coupled green and grey infrastructure systems:Evidence based on analytic hierarchy process and life cycle costing[J]. Resources,Conservation and Recycling,2019,151:104478. [58] UMEDA Y,FUKUSHIGE S,TONOIKE K. Evaluation of scenario-based modularization for lifecycle design[J]. CIRP Annals-Manufacturing Technology,2009,58(1):1-4. [59] KUO T,CHEN H,LIU C,et al. Applying multi-objective planning in low-carbon product design[J]. International Journal of Precision Engineering and Manufacturing,2014,15(2):241-249. [60] ZHENG H,YANG S,LOU S,et al. Knowledge-based integrated product design framework towards sustainable low-carbon manufacturing[J]. Advanced Engineering Informatics,2021,48(10-12):101258. [61] ZHOU G,LU Q,XIAO Z,et al. Ontology-based cutting tool configuration considering carbon emissions[J]. International Journal of Precision Engineering & Manufacturing,2017,18(11):1641-1657. [62] YOSHIZAKI Y,YAMADA T,ITSUBO N,et al. Material based low-carbon and economic supplier selection with estimation of CO2 emissions and cost using life cycle inventory database[J]. Journal of Japan Industrial Management Association,2016,66(4):435-442. [63] YIN R,KE J,MENDIS G,et al. A cutting parameter-based model for cost and carbon emission optimization in a NC turning process[J]. International Journal of Computer Integrated Manufacturing,2019(2):1-17. [64] ZHOU G,ZHANG C,LU F,et al. Integrated optimization of cutting parameters and tool path for cavity milling considering carbon emissions[J]. Journal of Cleaner Production,2020,250:119454. [65] KENTO,IGRASGI,TETSUO,et al. Disassembly system modeling and design with parts selection for cost,recycling and CO2 saving rates using multi criteria optimization-ScienceDirect[J]. Journal of Manufacturing Systems,2016,38:151-164. [66] XU Z,WANG Y,TENG Z,et al. Low-carbon product multi-objective optimization design for meeting requirements of enterprise,user and government[J]. Journal of Cleaner Production,2015,103:747-758. [67] CHENG J Y,CHEN J L. Accelerating preliminary eco-innovation design for products that integrates case-based reasoning and TRIZ method[J]. Journal of Cleaner Production,2011,19(9-10):998-1006. [68] 陈建,赵燕伟,李方义,等. 基于转换桥方法的产品绿色设计冲突消解[J]. 机械工程学报,2010,46(9):132-142. CHEN Jian,ZHAO Yanwei,LI Fangyi,et al. Transforming bridge-based conflict resolution for product green design[J]. Journal of Mechanical Engineering,2010,46(9):132-142. [69] 洪欢欢. 面向产品低碳设计的多因素冲突协调方法[D]. 杭州:浙江工业大学,2014. HONG Huanhuan. Coordination method of multi-factors conflicts for product low-carbon design[D]. Hangzhou:Zhejiang University of Technology,2014. [70] 孔琳,王黎明,李方义,等. 基于机床加工匹配特性的混合流水车间绿色生产调度[J]. 计算机集成制造系统,2019,25(5):1075-1085. KONG Lin,WANG Liming,LI Fangyi,et al. Sustainable scheduling for hybrid flow-shop based on performance matching of machine tools[J]. Computer Integrated Manufacturing Systems,2019,25(5):1075-1085. [71] SU J,CHU C,WANG Y. A decision support system to estimate the carbon emission and cost of product designs[J]. International Journal of Precision Engineering and Manufacturing,2012,13(7):1037-1045. [72] TIAN C. ZHOU G,ZHANG J,ZHANG C,et al. Optimization of cutting parameters considering tool wear conditions in low-carbon manufacturing environment[J]. Journal of Cleaner Production,2019,226:706-717. [73] DENG Z,LV L,HUANG W,et al. Modelling of carbon utilization efficiency and its application in milling parameters optimization[J]. International Journal of Production Research,2020,58(3):1-15. [74] 鲍宏,刘光复,王吉凯. 采用碳足迹分析的产品低碳优化设计[J]. 计算机辅助设计与图形学学报,2013,25(2):264-272. BAO Hong,LIU Guangfu,WANG Jikai. Optimal design of products with low-carbon based on carbon footprint analysis[J]. Journal of Computer-Aided Design and Computer Graphics,2013,25(2):264-272. [75] CHIANG T A,CHE Z H. A decision-making methodology for low-carbon electronic product design[J]. Decision Support Systems,2015,71:1-13. [76] WANG Q,TANG D,YIN L,et al. Bi-objective optimization for low-carbon product family design[J]. Robotics and Computer Integrated Manufacturing:An International Journal of Manufacturing and Product and Process Development,2016,41:53-65. [77] TAMBOURATZIS T,KARALEKAS D,MOUSTAKAS N. A methodological study for optimizing material selection in sustainable product design[J]. Journal of Industrial Ecology,2015,18(4):508-516. [78] NI H,YAN C,CAO W,et al. A novel parameter decision approach in hobbing process for minimizing carbon footprint and processing time[J]. The International Journal of Advanced Manufacturing Technology,2020,111(11-12):3405-3419. [79] KONG L,WANG L,LI F,et al. A new sustainable scheduling method for hybrid flow-shop subject to the characteristics of parallel machines[J]. IEEE Access,2020,8:79998-80009. [80] TANG D,DAI M,SALIDO M A,et al. Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization[J]. Computers in Industry,2016,81:82-95. [81] WANG K,LI X,GAO L. Modeling and optimization of multi-objective partial disassembly line balancing problem considering hazard and profit[J]. Journal of Cleaner Production,2018,211:115-133. [82] GAO Y,LIU Z,HU D,et al. Selection of green product design scheme based on multi-attribute decision-making method[J]. International Journal of Sustainable Engineering,2010,3(4):277-291. [83] 伍晓榕,张树有,裘乐淼,等. 面向绿色制造的加工工艺参数决策方法及应用[J]. 机械工程学报,2013,49(7):91-100. WU Xiaorong,ZHANG Shuyou,QIU Lemiao,et al. Decision making method of process parameter selection for green manufacturing based on a dematel-vikor algorithm[J]. Journal of Mechanical Engineering,2013,49(7):91-100. [84] LIU J,WANG L,LI F,et al. Evaluation and improvement of the greenness of plasma spraying through life cycle assessment and grey relational analysis[J]. The International Journal of Life Cycle Assessment,2021,26:1586-1606. [85] LI F,LI J,DUAN G,et al. Green Design-oriented product AHP life cycle environmental impact assessment model[C]//International Technology & Innovation Conference. IET,2009. 1020-1025. [86] LIU J,ZENG F,WEI X. Research on applying fuzzy comprehensive evaluation method to conceptual design of marine power plant based on QFD[C]//Sixth International Symposium on Computational Intelligence & Design. IEEE,2014. [87] CHEN C,HU M,CHEN W,et al. Fuzzy evaluation on design schemes of multi-deployment & locking mechanism for solar wings[C]//IEEE International Conference on Mechatronics and Automation, Xi'an,China,2010:11576477. [88] ZHANG H,LI Z,YANG J,et al. Construction of design evaluation system base on fuzzy theory[C]//2019 International Joint Conference on Information,Media and Engineering (IJCIME). 2019. [89] FENG C H,MAI Y F. Sustainability assessment of products based on fuzzy multi-criteria decision analysis[J]. The International Journal of Advanced Manufacturing Technology,2016,85(1/4):695-710. [90] TIAN G,ZHANG H,ZHOU M C,et al. AHP,gray correlation,and TOPSIS combined approach to green performance evaluation of design alternatives[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2017,48(7):1093-1105. [91] WANG X,CHAN H K,LI D. A case study of an integrated fuzzy methodology for green product development[J]. European Journal of Operational Research,2015,241(1):212-223. [92] 赖荣燊,林文广,吴永明. 面向绿色性能优化的产品族模块再设计优先次序识别[J]. 中国机械工程,2019,30(11):1329-1335. LAI Rongshen,LIN Wenguang,WU Yongming. Redesign priority identification of product family modules for green performance optimization[J]. China Mechanical Engineering,2019,30(11):1329-1335. [93] LIU A J,ZHU Q Y,JI X H,et al. Novel method for perceiving key requirements of customer collaboration low-carbon product design[J]. International Journal of Environmental Research and Public Health,2018,15(7):1446-1478. [94] KHAN F I,SADIQ R,HUSAIN T. Green Pro-I:A risk-based life cycle assessment and decision-making methodology for process plant design[J]. Environmental Modelling and Software,2002,17(8):669-692. [95] KUO T C,CHANG S H,HUANG S H. Environmentally conscious design by using fuzzy multi-attribute decision-making[J]. International Journal of Advanced Manufacturing Technology,2006,29(3-4):419-425. [96] ZARANDI M,MANSOUR S,HOSSEINIJOU S A,et al. A material selection methodology and expert system for sustainable product design[J]. International Journal of Advanced Manufacturing Technology,2011,57(9-12):885-903. [97] ALMEIDA C,RODRIGUES A,BONILLA S H,et al. Emergy as a tool for ecodesign:Evaluating materials selection for beverage packages in Brazil[J]. Journal of Cleaner Production,2010,18(1):32-43. [98] 刘志峰,成焕波,袁合. 面向家电产品的易拆解可回收设计系统研究[J]. 中国机械工程,2014,25(16):2213-2218. LIU Zhifeng,CHENG Huanbo,YUAN He. Research on easy disassembly and recycling design system for household electrical appliances[J]. China Mechanical Engineering,2014,25(16):2213-2218. [99] IGARASHI K,YAMADA T,INOUE M. Disassembly system design with environmental and economic parts selection using the recyclability evaluation method[J]. Journal of Japan Industrial Management Association,2013,64:293-302. [100] REYES P M,MAN J,JASKA P,et al. Recycle system design for end-of-life electronics in developing countries[J]. International Journal of Integrated Supply Management,2021,14(1):101-129. [101] LIU S,DU Y,LIN M. Study on lightweight structural optimization design system for gantry machine tool[J]. Concurrent Engineering,2019,27(2):170-185. [102] LIU Z,LU J,ZHU P. Lightweight design of automotive composite bumper system using modified particle swarm optimizer[J]. Composite Structures,2016,140(4):630-643. [103] PETERSSON H,MOTTE D,ERIKSSON M,et al. A computer-based design system for lightweight grippers in the automotive industry[C]//ASME International Mechanical Engineering Congress & Exposition. 2012. [104] NAKANO K. Life-cycle assessment framework for adaptation planning to climate change:Linking regional climate impact with product design[J]. The International Journal of Life Cycle Assessment,2015,20(6):819-828. [105] PAUDEL A M,KREUTZMANN P. Design and performance analysis of a hybrid solar tricycle for a sustainable local commute[J]. Renewable and Sustainable Energy Reviews,2015,41(1):473-482. [106] LEUBRECHT S. Fundamental principles for CAD-based ecological assessments[J]. International Journal of Life Cycle Assessment,2005,10(6):436-444. |
[1] | 陈洋睿, 刘显贵, 罗熙, 李怡, 游铭娴, 陈立沛. 挂载式悬架结构设计及防侧翻性能验证[J]. 机械工程学报, 2024, 60(19): 187-198. |
[2] | 刘帅军, 萨日娜, 李文博. 基于结构可拓模型的产品结构方案再设计方法[J]. 机械工程学报, 2024, 60(19): 225-240. |
[3] | 马翔宇, 郑讯佳, 何造. 基于最小作用量原理的多孔结构性能映射关系[J]. 机械工程学报, 2024, 60(19): 250-260. |
[4] | 孙雨欣, 蔡守宇, 张旭, 王珂. 基于自适应特征驱动法的散热结构拓扑优化设计[J]. 机械工程学报, 2024, 60(15): 346-357. |
[5] | 孙之琳, 王凯峰, 顾佩华. 设计理论与方法研究的回顾与展望[J]. 机械工程学报, 2024, 60(13): 2-20. |
[6] | 张健, 宋昕贤, 顾佩华. 复杂竞争产品的演化状态空间与可适应能力评价[J]. 机械工程学报, 2024, 60(13): 33-47. |
[7] | 鲍宏, 高翼飞, 万超, 刘志峰, 朱利斌, 王政. 面向多级循环再利用需求的产品易拆解交互式设计与知识推送研究[J]. 机械工程学报, 2024, 60(13): 257-267. |
[8] | 李欢笑, 吕胜男, 马小飞, 李昊, 林坤阳. 在轨组装空间天线模块化单元设计方法[J]. 机械工程学报, 2024, 60(13): 345-353. |
[9] | 赵宏跃, 史创, 郭宏伟, 刘荣强. 空间大型可展开环形张拉机构动力学特性分析[J]. 机械工程学报, 2024, 60(12): 344-354. |
[10] | 白影春, 刘康, 李超, 韩旭. 基于大规模并行计算的三维薄壁填充结构特征频率拓扑优化设计[J]. 机械工程学报, 2024, 60(11): 32-40. |
[11] | 李浩, 苗壮, 王昊琪, 张玉彦, 车福亮, 司红雷, 孙天兴, 王佳奇. 基于多域故障传播的中央空调系统可维修性设计评价[J]. 机械工程学报, 2024, 60(11): 191-204. |
[12] | 高楠, 王世宇, 夏春花, 魏振航. 变截面单元环状周期结构固有频率分裂规律研究[J]. 机械工程学报, 2024, 60(7): 114-123. |
[13] | 周祖意, 杨玉维, 齐文耀, 龚健超, 李照童. 腰部外骨骼机器人多刚-柔体动力学等效逆解方法研究及其性能优化综合[J]. 机械工程学报, 2024, 60(5): 107-118. |
[14] | 赵承伟, 张文豪, 龚天诚, 张逸云, 王长涛, 罗先刚. 平面光学元件超平整吸附装载的优化设计与分析[J]. 机械工程学报, 2024, 60(5): 241-248. |
[15] | 俞水, 吴晓, 郭鹏, 王志华. 基于首次穿越PDF自适应估计的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(5): 264-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||