[1] ENEVOLDSEN P,JACOBSON M Z. Data investigation of installed and output power densities of onshore and offshore wind turbines worldwide[J]. Energy for Sustainable Development,2021,60:40-51. [2] 秦海岩. "十四五",大力发展风电正当时[J]. 风能,2021,11:1-2. QIN Haiyan. A good opportunity to develop wind energy during the 14th Five-Year Plan period[J]. Wind Energy,2021,11:1-2. [3] 金晓航,孙毅,单继宏,等. 风力发电机组故障诊断与预测技术研究综述[J]. 仪器仪表学报,2017,385:1041-1053. JIN Xiaohang,SUN Yi,SHAN Jihong,et al. Review of wind turbine fault diagnosis and prediction technology research[J]. Chinese Journal of Scientific Instrument,2017,385:1041-1053. [4] 张帆,刘德顺,戴巨川,等. 一种基于SCADA参数关系的风电机组运行状态识别方法[J]. 机械工程学报,2019,55(4):1-9. ZHANG Fan,LIU Deshun,DAI Juchuan,et al. A method for identifying the operating state of wind turbines based on SCADA parameter relationship[J]. Journal of Mechanical Engineering,2019,55(4):1-9. [5] CHEN Hansi,LIU Hang,CHU Xuening,et al. Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network[J]. Renewable Energy,2021,1721:1. [6] 董兴辉,李佳,高迪,等. 风电机组效能和性能统一评估模型研究[J]. 机械工程学报,2021,57(14):253-260. DONG Xinghui,LI Jia,GAO Di,et al. Research on unified assessment model of wind turbine efficiency and performance[J]. Journal of Mechanical Engineering,2021,57(14):253-260. [7] 刘帅,刘长良,甄成刚. 基于数据分类重建的风电机组故障预警方法[J]. 仪器仪表学报,2019,40(8):1-11. LIU Shuai,LIU Changliang,ZHEN Chenggang. A fault early warning method for wind turbines based on data classification and reconstruction[J]. Chinese Journal of Scientific Instrument,2019,40(8):1-11. [8] PANG Yanhua,HE Qun,JIANG Guoqian,et al. Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data[J]. Renewable Energy,2020,161:510-524. [9] LI Yanting,LIU Shujun. Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data[J]. Renewable Energy,2018,134:1. [10] YANG Wenxian,COURT R,JIANG Jiesheng. Wind turbine condition monitoring by the approach of SCADA data analysis[J]. Renewable Energy,2013,539:365-376. [11] 郭慧东,王玮,夏明超. 基于数据挖掘的风电机组变桨系统劣化状态在线辨识方法[J]. 中国电机工程学报,2016,369:9. GUO Huidong,WANG Wei,XIA Mingchao. On-line identification method of wind turbine pitch system degradation state based on data mining[J]. Chinese Journal of Electrical Engineering,2016,369:9. [12] 董玉亮,李亚琼,曹海斌,等. 基于运行工况辨识的风电机组健康状态实时评价方法[J]. 中国电机工程学报,2013,33(11):88-95. DONG Yuliang,LI Yaqiong,CAO Haibin,et al. Real-time evaluation method of wind turbine health status based on operating condition identification[J]. Chinese Journal of Electrical Engineering,2013,33(11):88-95. [13] LAPIRA E,BRISSET D,ARDAKANI H D,et al. Wind turbine performance assessment using multi-regime modeling approach[J]. Renewable Energy,2012,45:86-95. [14] JIA Xiaodong,CHAO Jin,BUZZA M,et al. Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves[J]. Renewable Energy,2016,99:1191-1201. [15] XIAO Zhao,ZHAO Qiancheng,YANG Xuebing,et al. A power performance online assessment method of a wind turbine based on the probabilistic area metric[J]. Applied Sciences,2020,10:1. [16] ZHU Anfeng,XIAO Zhao,ZHAO Qiancheng. Power data preprocessing method of mountain wind farm based on POT-DBSCAN[J]. Energy Engineering,2021,118(3):549-563. [17] BECKER E,POSTE P. Keeping the blades turning:Condition monitoring of wind turbine gears[J]. Wind Energy,2006,7(2):26-32. [18] 刘永前,王飞,时文刚,等. 基于支持向量机的风电机组运行工况分类方法[J]. 太阳能学报,2010,31(9):1191-1197. LIU Yongqian,WANG Fei,SHI Wengang,et al. Operation condition classification method for wind turbine based on support vector machine[J]. Acta Energiae Solaris Sinica,2010,31(9):1191-1197. [19] HIMBERG J,KORPIAHO K,MANNILA H,et al. Time series segmentation for context recognition in mobile devices[C]//IEEE International Conference on Data Mining. IEEE,2002:1. [20] BEGUM N,ULANOVA L,WANG Jun,et al. Accelerating dynamic time warping clustering with a novel admissible pruning strategy[C]//ACM Sigkdd International Conference on Knowledge Discovery & Data Mining. ACM,2015:49-58. [21] HALLAC D,NYSTRUP P,BOYD S. Greedy gaussian segmentation of multivariate time series[J]. Advances in Data Analysis and Classification,2016,13:727-751. [22] HALLAC D,VARE S,BOYD S,et al. Toeplitz inverse covariance-based clustering of multivariate time series data[C]//The 23rd ACM SIGKDD International Conference. ACM,2017:1. |