[1] GONG Y,ZHANG L,LIU R,et al. Nonlinear MIMO for industrial internet of things in cyber-physical systems[J].IEEE Transactions on Industrial Informatics, 2020,17(8):5533-5541. [2] ZHEN L,BASHUR A K,YU K,et al. Energy-efficient random access for LEO satellite-assisted 6G internet of remote things[J]. IEEE Internet of Things Journal,2021,8(7):5114-5128. [3] ZHAO L,ZHAO W,HAWBANI A,et al. Novel online sequential learning-based adaptive routing for edge software-defined vehicular networks[J]. IEEE Transactions on Wireless Communications,2020,20(5):2991-3004. [4] ZHAO L, YANG K, TAN Z, et al. A novel cost optimization strategy for SDN-enabled UAV-assisted vehicular computation offloading[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(6):3664-3674 [5] ZHAO L, HAN G, LI Z, et al. Intelligent digital twin-based software-defined vehicular networks[J]. IEEE Network,2020,34(5):178-184. [6] ZHAO L,LIU Y,Al-DUBAI A Y,et al. A novel generation-adversarial-network-based vehicle trajectory prediction method for intelligent vehicular networks[J].IEEE Internet of Things Journal,2021,8(3):2066-2077. [7] 黄晶,李勇,胡林.基于数据关联和改进统计模型的激光雷达目标跟踪研究[J].汽车工程,2018,40(3):356-362.HUANG Jing,LI Yong,HU Lin. A research on target tracking by LIDAR based on data association and improved statistical model[J]. Automotive Engineering,2018,40(3):356-362. [8] XIE D,FANG Z,JIA B,et al. A data-driven lane-changing model based on deep learning[J]. Transportation Research Part C:Emerging Technologies,2019,106:41-60. [9] SU S, MUELLING K, DOLAN J, et al. Learning vehicle surrounding-aware lane-changing behavior from observed trajectories[C]//2018 IEEE Intelligent Vehicles Symposium(IV). China:IEEE,2018:1412-1417. [10] 张海伦,付锐.高速场景相邻前车驾驶行为识别及意图预测[J].交通运输系统工程与信息,2020,20(1):40-46.ZHANG Hailun, FU Rui. Driving behavior recognition and intention prediction of adjacent preceding vehicle in highway scene[J]. Journal of Transportation Systems Engineering and Information Technology,2020,20(1):40-46. [11] YU K,LIN L,ALAZAB M,et al. Deep learning-based traffic safety solution for a mixture of autonomous and manual vehicles in a 5G-enabled intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems,2021,22(7):4337-4347. [12] PENG J,GUO Yingshi,FU Rui,et al. Multi-parameter prediction of drivers'lane-changing behaviour with neural network model[J]. Applied Ergonomics, 2015, 50:207-217. [13] IZQUIERDO R,QUINTANAR A,PARRA I,et al.Experimental validation of lane-change intention prediction methodologies based on CNN and LSTM[C]//2019 IEEE Intelligent Transportation Systems Conference(ITSC). New Zealand:IEEE,2019:3657-3662. [14] MOUSSAID A,BERRADA I,El KAMILI M,et al.Predicting driver lane change maneuvers using driver's face[C]//2019 International Conference on Wireless Networks and Mobile Communications(WINCOM).Morocco:IEEE,2019:1-7. [15] ORDÓÑEZ F J,ROGGEN D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition[J]. Sensors,2016,16(1):115. [16] ABEDINIA O,AMJADY N,ZAREIPOUR H. A new feature selection technique for load and price forecast of electrical power systems[J]. IEEE Transactions on Power Systems,2016,32(1):62-74. [17] 车畅畅,王华伟,倪晓梅,等.基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J].机械工程学报,2021,57(14):304-312.CHE Changchang,WANG Huawei,NI Xiaomei. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering,2021,57(14):304-312. [18] 李梅,宁德军,郭佳程.基于注意力机制的CNN-LSTM模型及其应用[J].计算机工程与应用,2019,55(13):20-27.LI Mei, NING Dejun, GUO Jiacheng. Attention mechanism-based CNN-LSTM model and its application[J]. Computer Engineering and Applications,2019,55(13):20-27. [19] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. USA:NIPS,2017:5998-6008. [20] GIULIARI F, HASAN I, CRISTANI M, et al.Transformer networks for trajectory forecasting[C]//202025th International Conference on Pattern Recognition(ICPR). Italy:IEEE,2021:10335-10342. [21] ZHOU H,ZHANG S,PPENG J,et al. Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Virtual:AAAI,2021:11106-11115. [22] LIU Y,ZHANG J,FANG L,et al. Multimodal motion prediction with stacked Transformers[C]//2021IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). USA:IEEE,2021:7573-7582. [23] LIU S,WANG B,DENG X,et al. Self-attentive graph convolution network with latent group mining and collaborative filtering for personalized recommendation[J/OL]. IEEE Transactions on Network Science and Engineering, 2021.[2021-10-11].https://ieeexplore.ieee.org/abstract/document/9531473. [24] 宋晓琳,曾艳兵,曹昊天,等.基于长短期记忆网络的换道意图识别方法[J].中国公路学报,2021,11(8):1-11.SONG Xiaolin,ZENG Yanbing,CAO Haotian,et al. Lane change intention recognition method based on LSTM network[J]. China Journal of Highways,2021,11(8):1-11. [25] XU K,BA J,KIROS R,et al. Show,attend and tell:Neural image caption generation with visual attention[C]//International Conference on Machine Learning. France:PMLR,2015:2048-2057. [26] 李海超,刘景风,谢吉兵,等.基于卷积神经网络的GTAW熔透预测[J].机械工程学报,2019,55(17):22-28.LI Haichao,LIU Jingfeng,XIE Jibing,et al. GTAW penetration prediction model based on convolution neural network algorithm[J]. Journal of Mechanical Engineering,2019,55(17):22-28. [27] IOFFE S,SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.France:PMLR,2015:448-456. [28] HOCHREITER S,SCHMIDHUBER J. Long short-term memory[J]. Neural Computation,1997,9(8):1735-1780. [29] FEDERAL HIGHWAY ADMINISTRATION. NGSIMnext generation simulation[EB/OL].[2021-10-11].https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm. [30] THIEMANN C,TREIBER M,KESTING A. Estimating acceleration and lane-changing dynamics from next generation simulation trajectory data[J]. Transportation Research Record,2008(1):90-101. [31] DOROUDGAR S,CHUANG H M,PERRY P J,et al.Driving performance comparing older versus younger drivers[J]. Traffic Injury Prevention,2017,18(1):41-46. [32] 陈灵,陈郑平,李军良,等.基于深度卷积神经网络和合作博弈的多微网实时能量管理策略[J].电气工程学报,2022,17(2):215-225.CHEN Ling,CHEN Zhengping,LI Junliang,et al.Real-time energy management strategy for micro-grid clusters based on deep convolutional neural network and cooperative game[J]. Journal of Electrical Engineering,2022,17(2):215-225. [33] 李宇,杨柳林.基于卷积神经网络的配电网单相接地故障识别[J].电气工程学报,2020,15(3):22-30.LI Yu, YANG Liulin. Identification of single-phaseto-earth fault in distribution network based on convolutional neural network[J]. Journal of Electrical Engineering,2020,15(3):22-30. |