• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (22): 227-234.doi: 10.3901/JME.2022.22.227

• 材料科学与工程 • 上一篇    下一篇

扫码分享

铝合金自冲铆工艺参数的多元非线性回归模型

陈贵坤, 曾凯, 邢保英, 何晓聪   

  1. 昆明理工大学云南省先进装备智能制造技术重点实验室 昆明 650500
  • 收稿日期:2021-12-03 修回日期:2022-05-05 出版日期:2022-11-20 发布日期:2023-02-07
  • 通讯作者: 曾凯(通信作者),男,1976年出生,博士,副教授,硕士研究生导师。主要研究方向为薄板材料连接新技术、结构可靠性设计及疲劳失效分析,发表科技论文40余篇,获国家发明专利7项。E-mail:kmzk201109@163.com
  • 作者简介:陈贵坤,男,1997年出生,硕士研究生。主要研究方向薄板材料连接新技术。E-mail:chengk_kust@163.com
  • 基金资助:
    国家自然科学基金资助项目(51565022,51565023)

Multiple Nonlinear Regression Model of Process Parameters for Aluminum Alloy Self-piercing Riveting

CHEN Gui-kun, CENG Kai, XING Bao-ying, HE Xiao-cong   

  1. Yunnan Key Laboratory of Advanced Equipment and Intelligent Manufacturing Technology, Kunming University of Science and Technology, Kunming 650500
  • Received:2021-12-03 Revised:2022-05-05 Online:2022-11-20 Published:2023-02-07

摘要: 建立有效、可靠的自冲铆工艺及力学性能预测模型是其工业应用推广过程中亟待解决的一个重要问题。选取AA5182、AA5052和AL1420三种铝合金薄板材料,基于Box-Behnken Design(BBD)响应面法开展了铝合金自冲铆连接试验研究。以板厚、板材硬度和铆钉硬度为三参数输入条件,以冲头行程、最大冲压力和失效载荷为输出响应值,建立影响因素与响应值之间的回归模型,探究多种输入参数对响应值的影响规律。试验结果表明:依据回归模型得到的工艺和强度理论预测值与试验值之间的误差在8%以内,建立的回归模型具有较高的工程应用可靠性。通过三维响应面和等高线分析表明,板厚和铆钉硬度的交互作用对最大冲压力和失效载荷的影响最大,冲头行程主要受板材硬度和铆钉硬度的交互影响。

关键词: 铝合金, 自冲铆, 回归预测模型, 输入参数

Abstract: Establishing an effective and reliable prediction model of self-piercing riveting process and mechanical properties is an important problem to be solved in the process of industrial application and promotion. Box-Behnken Design response face test was carried out to investigate the parameter of AA5182, AA5052 and AL1420 aluminum alloy self-piercing riveting. Taking the plate thickness, material hardness and rivet hardness were used as input values. Meanwhile, the punch stroke, the maximum riveting force and the failure load of the joint were used as the output response values. The experimental was established the multiple nonlinear regression model between the influencing factors and the response value, and the influence rule of multiple input parameters for response values was studied. The result shows that, the errors between the process and strength theory prediction values of the model and the real values are within 8%. The optimized regression model has high reliability in engineering applications. Combined with the three-dimensional response surface and contour map of the model, it can be seen that the interaction of plate thickness and rivet hardness has the greatest impact on the failure load of the joint and maximum riveting force, and the punch stroke is mainly affected by the interaction of plate hardness and rivet hardness.

Key words: aluminum alloy, self-piercing riveting(SPR), regression prediction model, input parameter

中图分类号: