[1] 杨莉, 陈缘, 丁峰, 等. 混杂比对交织芳纶碳纤维复合材料力学性能的影响[J]. 中国塑料, 2021, 35(5):40-46. YANG Li, CHEN Yuan, DING Feng, et al. Influence of hybrid ratio on mechanical properties of aramid/carbon hybrid fiber composites with interwoven structure[J]. China Plastics, 2021, 35(5):40-46. [2] 孙颖, 田书全, 唐梦云, 等. 碳-芳纶二维编织复合材料层板的抗低速冲击性能[J]. 天津工业大学学报, 2018, 37(3):1-6. SUN Ying, TIAN Shuquan, TANG Mengyun, et al. Low velocity impact response of carbon-aramid/epoxy hybrid 2D braided composites[J]. Journal of Tianjin Polytechnic University, 2018, 37(3):1-6. [3] HE Y, SHEIKH-AHMAD J, ZHU S, et al. Cutting force analysis considering edge effects in the milling of carbon fiber reinforced polymer composite[J]. Journal of Materials Processing Technology, 2020, 279:116541. [4] 霍豪闯. 芳纶纤维复合材料高质量制孔工艺研究[D]. 大连:大连理工大学, 2019. HUO Haochuang. Study on high quality hole making of aramid fiber composites[D]. Dalian:Dalian University of Technology, 2019. [5] ABENA A, ESSA K. 3D micro-mechanical modelling of orthogonal cutting of UD-CFRP using smoothed particle hydrodynamics and finite element methods[J]. Composite Structures, 2019, 218:174-192. [6] KOPLEV A A, LYSTRUP A, VORM T. The cutting process, chips, and cutting forces in machining CFRP[J]. composites, 1983, 14(4):371-376. [7] WANG D H, RAMULU M, AROLA D. Orthogonal cutting mechanisms of graphite/epoxy composite. Part I:Unidirectional laminate[J]. International Journal of Machine Tools and Manufacture, 1995, 35(12):1623-1638. [8] SU Y, JIA Z, NIU B, et al. Size effect of depth of cut on chip formation mechanism in machining of CFRP[J]. Composite Structures, 2017, 164:316-327. [9] 崔鹏. 芳纶纤维复合材料改性制备方法及其切削加工性研究[D]. 济南:山东大学, 2020. CUI Peng. Study on modified preparation method and machinability of aramid fiber-reinforced polymer[D]. Jinan:Shandong University, 2020. [10] LIU S, YANG T, LIU C, et al. Modelling and experimental validation on drilling delamination of aramid fiber reinforced plastic composites[J]. Composite Structures, 2020, 236:111907. [11] SHI Z Y, CUI P, LI X. A review on research progress of machining technologies of carbon fiber-reinforced polymer and aramid fiber-reinforced polymer[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(13):4508-4520. [12] LIU S Q, CHEN Y, FU Y C, et al. Study on the cutting force and machined surface quality of milling AFRP[C]//Materials Science Forum. Trans Tech Publications Ltd, 2016, 836:155-160. [13] 刘思齐. 芳纶纤维增强树脂基复合材料的切削加工性研究[D]. 南京:南京航空航天大学, 2016. LIU Siqi. Research on the machinability of Aramid Fiber Reinforced Plastics[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016. [14] 郑雷, 袁军堂, 汪振华. 纤维增强复合材料磨削钻孔的表面微观研究[J]. 兵工学报, 2008, 29(12):1492-1496. ZHENG Lei, YUAN Juntang, WANG Zhenhua. Microscopic study of ground surfaces of drilled holes in fibre reinforced plastics[J]. Acta Armamentari I, 2008, 29(12):1492-1496. [15] 石文天, 韩冬, 刘玉德, 等. 超低温微铣削芳纶纤维复合材料表面质量[J]. 中国机械工程, 2019, 30(9):1056-1064. SHI Wentian, HAN Dong, LIU Yude, et al. Surface quality of aramid fiber composites with ultra-low temperature and micro-milling[J]. China Mechanical Engineering, 2019, 30(9):1056-1064. [16] XU J, FENG P, FENG F, et al. Subsurface damage and burr improvements of aramid fiber reinforced plastics by using longitudinal-torsional ultrasonic vibration milling[J]. Journal of Materials Processing Technology, 2021:117265. [17] LIU H, XIE W, SUN Y, et al. Investigations on micro-cutting mechanism and surface quality of carbon fiber-reinforced plastic composites[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9):3655-3664. [18] MENG Q, CAI J, CHENG H, et al. Investigation of CFRP cutting mechanism variation and the induced effects on cutting response and damage distribution[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(7):2893-2907. [19] 高汉卿, 贾振元, 王福吉, 等. 基于细观仿真建模的CFRP细观破坏[J]. 复合材料学报, 2016, 33(4):758-767. GAO Hanqing, JIA Zhenyuan, WANG Fuji, et al. Mesoscopic failure of CFRP based on mesoscopic simulation modeling[J]. Acta Materiae Compositae Sinca, 2016, 33(4):758-767. [20] 殷俊伟, 贾振元, 王福吉, 等. 基于CFRP切削过程仿真的面下损伤形成分析[J]. 机械工程学报, 2016, 52(17):58-64. YIN Junwei, JIA Zhenyuan, WANG Fuji, et al. FEM simulation analysis of subsurface damage formation based on continuously cutting process of CFRP[J]. Journal of Mechanical Engineering, 2016, 2016, 52(17):58-64. [21] QI Z, ZHANG K, CHENG H, et al. Microscopic mechanism based force prediction in orthogonal cutting of unidirectional CFRP[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(5):1209-1219. [22] HINTZE W, HARTMANN D, SCHÜTTE C. Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs)-An experimental study[J]. Composites Science and Technology, 2011, 71(15):1719-1726. [23] JUNG J P, KIM G W, LEE K Y. Critical thrust force at delamination propagation during drilling of angle-ply laminates[J]. Composite Structures, 2005, 68(4):391-397. [24] 吕毅, 张伟. 平纹编织C/SiC复合材料精细RVE的建立[J]. 中国陶瓷, 2017, 53(9):11-18. LÜ Yi, ZHANG Wei. Establishment of detailed RVE of plain weave c/SiC composite[J]. China Ceramics, 2017, 53(9):11-18. [25] CHEN R, LI S, LI P, et al. Effect of fiber orientation angles on the material removal behavior of CFRP during cutting process by multi-scale characterization[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11):5017-5031. [26] 沈观林, 胡更开. 复合材料力学[M]. 北京:清华大学出版社, 2006. SHEN Guanlin, HU Gengkai. Mechanics of composite materials[M]. Beijing:Tsinghua University Press, 2006. [27] WANG C, LIU G, AN Q, et al. Occurrence and formation mechanism of surface cavity defects during orthogonal milling of CFRP laminates[J]. Composites Part B:Engineering, 2017, 109:10-22. [28] BAHARLOOEY D, ABOOTORABI M M. Defects in the Kevlar-epoxy thin layer sheet drilling with different machining strategies[J]. Polymers and Polymer Composites, 2021, 29(7):909-918. |