[1] DZURAK A. Quantum computing:Diamond and silicon converge[J]. Nature, 2011, 479:47-48. [2] SHORE P, CUNNINGHAM C, DEBRA D, et al. Precision engineering for astronomy and gravity science[J]. CIRP Annals-Manufacturing Technology, 2010, 59:694-716. [3] 傅玉灿. 难加工材料高效加工技术[M]. 西安:西北工业大学出版社, 2010. FU Yucan. High-efficiency machining technology for difficult-to-machine materials[M]. Xian:Northwest University of Technology Press, 2010. [4] RAMESH K, YEO S, GOWRI S, et al. Experimental evalution of super high-speed grinding of advanced ceramics[J]. International Journal of Advanced Manufacturing Technology, 2001, 17:87-92. [5] 吴重军. 碳化硅磨削微观损伤机理及其高性能磨削技术研究[D]. 上海:东华大学, 2017. WU Chongjun. Research on micro-damage mechanism in grinding of silicon carbide and its high performance grinding technology[D]. Shanghai:Donghua Univerity, 2017. [6] LING Y, HAN H. Ceramic response to high speed grinding[J]. Machining Science and Technology, 2004, 8(1):21-37. [7] LIU W, DENG Z, SHANG Y, et al. Effects of grinding parameters on surface quality in silicon notride grinding[J]. Ceramics International, 2017, 43:1571-1577. [8] LI P, JIN T, GUO Z F, et al. Analysis on the effects of grinding wheel speed on removal behavior of brittle optical materials[J]. Journal of Manufacturing Science and Engineering, 2017, 139(03014):1-8. [9] KAR S, BANDYOPADHYAY P, PAUL S. High speed and precision grinding of plasma sprayed oxide ceramic coatings[J]. Ceramics International, 2017, 43:15316-15331. [10] CHEN J, FANG Q, LI P. Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding[J]. International Journal of Machine Tools & Manufacturing, 2015, 91:12-23. [11] ZHANG B, YIN J F. The ‘skin effect’ of subsurface damage distribution in materials subjected to high-speed machining[J]. International Journal of Extreme Manufacturing, 2019, 012007:1-12. [12] SCHINKER M G. Subsurface damage mechanisms at high-speed ductile machine of optical glasses[J]. Precision Engineering, 1991, 13(3):208-218. [13] SCHINKER M G, Doll W. Basic investigations into the high speed processing of optical glasses with diamond tools[J]. Optical Surface Technology, 1983, 381:32-38. [14] MALKIN S, HWANG T W. Grinding mechanisms for ceramics[J]. CIRP Annal Manufacturing Technology, 1996, 45(2):569-580. [15] ZHANG B, HOWS T D. Subsurface evaluation of ground ceramics[J]. CIRP Annal Manufacturing Technology, 1995, 44(1):263-266. [16] WU C J, LI B Z, LIU Y, et al. Strain rate-sensitive analysis for grinding damage of brittle materials[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89:2221-2229. [17] 任敬心, 华定安. 磨削原理[M]. 西安:西北工业大学出版社, 1988. REN Jingxin, HUA Dingan. Grinding principle[M]. Xi'an:Northwest University of Technology Press, 1988. [18] YIN L, VANCOILLE E, LEE L. High-quality grinding of polycrystalline silicon carbide spherical surfaces[J]. Wear, 2004, 256:97-207. [19] MOLINARI A, ESTRIN Y, MERCIER S. Dependence of the coefficient of friction on the sliding conditions in the high velocity range[J]. Journal of Tribology, 1999, 121:35-41. [20] ZHANG D, ZHAO L G, ROY A. Mechanical behavior of silicon carbide under static and dynamic compression[J]. Journal of Engineering Materials and Technology, 2019, 141(1):011007. [21] 赵敬世. 位错理论基础[M]. 北京:国防工业出版社, 1989. ZHAO Jingshi. Dislocation theory[M]. Beijing:National Defense Industry Press, 1989. [22] 李平. 脆性光学材料高效精密低损伤磨削加工机理、工艺及工程应用研究[D]. 长沙:湖南大学, 2016. LI Ping. Research on grinding mechanism, processing and engineering application of the precision and low damage grinding technology oriented to achieve high process efficiency for brittle optical materials[D]. Changsha:Hunan University, 2016. [23] 平琦, 骆轩, 马芹永, 等. 冲击载荷作用下砂岩试件破碎能耗特征[J]. 岩石力学与工程学报, 2015, 34:4197-4203. PING Qi, LUO Xuan, MA Qinyong, et al. Broken energy dissipation characteristics of sandstone specimens under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34:4197-4203. [24] 余同希. 冲击动力学[M]. 北京:清华大学出版社, 2011. YU Tongxi. Impact dynamics[M]. Beijing:Tsinghua University Press, 2011. |