机械工程学报 ›› 2022, Vol. 58 ›› Issue (21): 171-185.doi: 10.3901/JME.2022.21.171
陈恕彬1, 王慧妍1, 李应龙2, 王瑞雪1, 孔祥号1, 夏章川1
收稿日期:
2021-12-09
修回日期:
2022-04-14
出版日期:
2022-11-05
发布日期:
2022-12-23
通讯作者:
王瑞雪(通信作者),女,1987年出生,博士,教授,博士研究生导师。主要研究方向为放电等离子体及应用。E-mail:wrx@mail.buct.edu.cn
作者简介:
陈恕彬,男,1996年出生。主要研究方向为纳米摩擦发电机激励等离子体及应用。E-mail:chenshubin6@163.com
基金资助:
CHEN Shubin1, WANG Huiyan1, LI Yinglong2, WANG Ruixue1, KONG Xianghao1, XIA Zhangchuan1
Received:
2021-12-09
Revised:
2022-04-14
Online:
2022-11-05
Published:
2022-12-23
摘要: 简要介绍了等离子体和摩擦纳米发电机(TENG)的相关概念、发展历程及分类,从绿色节能的角度出发阐述了两者相辅相成的发展现状。在此基础上,分别从等离子体对TENG摩擦材料的表面改性和TENG激励的等离子体两个方面展开综述。基于当前的研究进展和存在的关键问题,梳理了通过等离子体表面改性提升TENG输出性能的各类方法,并进一步阐述了等离子体刻蚀和离子注入\辐照的应用现状,对TENG所能激励的不同等离子体电极结构进行了综述,并对其在输出性能的优化、场发射和质谱分析、物质合成与环境应用等领域的应用进展进行了分析。最后,对等离子体和TENG的融合做出总结,阐述了两者现阶段协同发展存在的问题和未来的发展方向,对今后融合发展的、以应用为导向的研究工作提供一定的参考。
中图分类号:
陈恕彬, 王慧妍, 李应龙, 王瑞雪, 孔祥号, 夏章川. 摩擦纳米发电机与等离子体技术的交叉融合[J]. 机械工程学报, 2022, 58(21): 171-185.
CHEN Shubin, WANG Huiyan, LI Yinglong, WANG Ruixue, KONG Xianghao, XIA Zhangchuan. Mutual Integration of Triboelectric Nanogenerator and Plasma Technology[J]. Journal of Mechanical Engineering, 2022, 58(21): 171-185.
[1] 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12):3697-3727. LI Heping, YU Daren, SUN Wenting, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12):3697-3727. [2] ENGEL A V, SEELIGER R, STEENBECK M. Über die glimmentladung bei hohen drucken[J]. Zeitchrift für Physik, 1933, 85:144-160. [3] SCHWAB H A, MANKA C K. A study of charge transport in a high-pressure RF discharge[J]. Journal of Applied Physics, 1969, 40(2):696-706. [4] 何欣钟. 聚四氟乙烯低温等离子体接枝改性及无钯化学镀铜[D]. 上海:中国科学院大学, 2016. HE Xinzhong. Graft-modification of polytetrafluoroethy-lene (PTFE) by low temperature plasma and electroless copper deposition without Pd[D]. Shanghai:The University of Chinese Academy of Sciences, 2016. [5] 王瑞雪, 李忠文, 虎攀, 等. 低温等离子体化学毒剂洗消技术研究进展[J]. 电工技术学报, 2021, 36(5):187-201. WANG Ruixue, LI Zhongwen, HU Pan, et al. Review of research progress of plasma chemical warfare agents degradation[J]. Transactions of China Electrotechnical Society, 2021, 36(5):187-201. [6] 陈冬财, 杨霞, 聂利, 等. 大气压低温等离子体联合生理盐水漂白牙齿的效果及安全性评价[J]. 第三军医大学学报, 2019, 41(13):1281-1287. CHEN Dongcai, YANG Xia, NIE Li, et al. Evaluation for efficacy and safety of tooth bleaching by nonthermal atmospheric pressure plasma with saline solution[J]. Acta Academiae Medicinae Militaris Tertiae, 2019, 41(13):1281-1287. [7] LI Yinglong, KE Sun, YE Guopin, et al. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal enterococcus faecalis, biofilm in vitro[J]. Journal of Endodontics, 2015, 41(8):1325-1330. [8] ШАПОВАЛОВ В А, 许小海, 汪源, 等. 等离子体技术在冶炼和铸造生产中的应用[J]. 真空, 2019, 56(5):1-5. ШАПОВАЛОВ В А, XU Xiaohai, WANG Yuan, et al. Application of plasma technology in smelting and foundry production[J]. Vacuum, 2019, 56(5):1-5. [9] 苏风梅, 张达, 梁风. 低温等离子体制备与改性纳米催化材料的研究进展[J]. 应用化学, 2019, 36(8):882-891. SU Fengmei, ZHANG Da, LIANG Feng. Progress in preparation and modification of nano-catalytic materials by low-temperature plasma[J]. Chinese Journal of Applied Chemistry, 2019, 36(8):882-891. [10] 雷明凯, 郭东明. 高性能表面层制造基于可控表面完整性的精密制造[J]. 机械工程学报, 2016, 52(17):187-197. LEI Mingkai, GUO Dongming. High-performance surface layer manufacturing:A precision processing method based on controllable surface integrity[J]. Journal of Mechanical Engineering, 2016, 52(17):187-197. [11] 王瑞雪, 叶巴丁, 孔祥号, 等. 低温等离子体表面强化技术研究进展[J]. 机械工程学报, 2021, 57(12):192-207. WANG Ruixue, YE Bading, KONG Xianghao, et al. Research progress of low temperature plasma surface strengthening technology[J]. Journal of Mechanical Engineering, 2021, 57(12):192-207. [12] 刘明雪, 王晓辉, 赵倩, 等. 低温等离子体处理对纺织品磁控溅射镀膜的影响[J]. 丝绸, 2021, 58(2):1-6. LIU Mingxue, WANG Xiaohui, ZHAO Qian, et al. Impact of low temperature plasma treatment on magnetron sputter coating of textiles[J]. Journal of Silk, 2021, 58(2):1-6. [13] 唐恩凌, 张静, 刘明石. 低温等离子体技术在材料表面改性中的应用[J]. 电工材料, 2008, 3:38-41. TANG Enling, ZHAGN Jing, LIU Mingshi. Application of low-temperature plasma technology in surface modification of material[J]. Electrical Engineering Materials, 2008, 3:38-41. [14] 杨超, 邱高. 等离子体表面技术和在有机材料表面改性应用中的新进展[J]. 高分子材料科学工程, 2001, 17(6):30-34. YANG Chao, QIU Gao. Development in low-temperature plasma technique and application to surface modification of organic materials[J]. Polymer Materials Science and Engineering, 2001, 17(6):30-34. [15] 李治一. 大气压低温等离子体射流的形成机理研究[D]. 北京:北京交通大学, 2019. LI Zhiyi. Study on formation mechanism of atmospheric pressure low temperature plasma jet[D]. Beijing:Beijing Jiaotong University, 2019. [16] 时雪. 摩擦纳米发电机驱动的微等离子体催化CO氧化反应及其反应激励研究[D]. 开封:河南大学, 2020. SHI Xue. Research on microplasma catalytic oxidation of CO driven by triboelectric nanogenerator and its reaction mechanism[D]. Kaifeng:Henan University, 2020. [17] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3):685-705. SHAO Tao, ZHANG Cheng, WANG Ruixue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3):685-705. [18] 王尚民. 三电极冷等离子体射流放电特性及应用研究[D]. 大连:大连理工大学, 2014. WANG Shangmin. Experimental study on discharge characteristic and application of triple electrode cold plasma jets[D]. Dalian:Dalian University of Technology, 2014. [19] 徐周, 王宏华, 郭鹏, 等. 基于倍压整流电路的高压交流电源设计[J]. 科学技术与工程, 2014, 14(13):191-194. XU Zhou, WANG Honghua, GUO Peng, et al. The design of high-voltage AC power supply based on voltage doubling rectifying circuit[J]. Science Technology and Engineering, 2014, 14(13):191-194. [20] 罗廷芳. 基于LCC串并联谐振充电的高压脉冲电源设计[D]. 长沙:湖南大学, 2010. LUO Tingfang. Design of the high voltage pulse power supply based on the LCC series-parallel resonant coverter[D]. Changsha:Hunan University, 2010. [21] 赵珂. 基于摩擦纳米发电机气体放电活化CO2及其还原性能研究[D]. 开封:河南大学, 2019. ZHAO Ke. The study on CO2 ionization driven by triboelectric nanogenerator and its application in CO2 redcution[D]. Kaifeng:Henan University, 2019. [22] ZHANG Xiaosheng, HAN Mengdi, MENG Bo, et al. High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies[J]. Nano Energy, 2015, 11:304-322. [23] 肖渊, 刘进超, 吕晓来, 等. CNT/PDMS介电层微结构成型及摩擦纳米发电机制备[J]. 机械工程学报, 2021, 57(15):177-185. XIAO Yuan, LIU Jinchao, LÜ Xiaolai, et al. The surface micro-structure of CNT/PDMS dielectric layer is formed and the triboelectric nanogenerators is prepared[J]. Journal of Mechanical Engineering, 2021, 57(15):177-185. [24] 张弛, 付贤鹏, 王中林. 摩擦纳米发电机在自驱动微系统研究中的现状与展望[J]. 机械工程学报, 2019, 55(7):89-101. ZHANG Chi, FU Xianpeng, WANG Zhonglin. Review and prospect of triboelectric nanogenerators in self-powered microsystems[J]. Journal of Mechanical Engineering, 2019, 55(7):89-101. [25] HU Jie, PU Xianjie, YANG Hongmei, et al. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor[J]. Nano Research, 2019, 12(5):3018-3023. [26] PARK H R, LEE J W, KIM D S, et al. Arrangement optimization of water-driven triboelectric nanogenerators considering capillary phenomenon between hydrophobic surfaces[J]. Scientific Reports, 2020, 10(1):1-8. [27] XI Yinhu, HUA Jing, SHI Yijun. Noncontact triboelectric nanogenerator for human motion monitoring and energy harvesting[J]. Nano Energy, 2020, 69:104390. [28] ZENG Qixuan, WU Yan, TANG Qian, et al. A high-efficient breeze energy harvester utilizing a full-packaged triboelectric nanogenerator based on flow-induced vibration[J]. Nano Energy, 2020, 70:104524. [29] 竭洋. 基于摩擦纳米发电机的自驱动纳米传感器设计与应用研究[D]. 北京:北京科技大学, 2017. JIE Yang. Design and application of self-powered nanosensors based on triboelectric nanogenerator[D]. Beijing:University of Science and Technology Beijing, 2017. [30] 苏元捷. 摩擦纳米发电机设计与制备及应用研究[D]. 成都:电子科技大学, 2015. SU Yuanjie. The study of design, preparation and applications of triboelectric nanogenerators[D]. Chengdu:University of Electronic Science and Technology of China, 2015. [31] DU Jian, DUAN Jialong, YANG Xiya, et al. Charge boosting and storage by tailoring rhombus all-inorganic perovskite nanoarrays for robust triboelectric nanogenerators[J]. Nano Energy, 2020, 74:104845. [32] WANG Haobin, HAN Mengdi, SONG Yu, et al. Design, manufacturing and applications of wearable triboelectric nanogenerators[J]. Nano Energy, 2021, 8:105627. [33] SHI Qiongfeng, SUN Zhongda, ZHANG Zixuan, et al. Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications[J]. Research, 2021:6849171. [34] PAN Min, YUAN Chenggang, LIANG Xianrong, et al. Triboelectric and piezoelectric nanogenerators for future soft robots and machines[J]. IScience, 2020, 23(11):101682. [35] ZHAO Ke, GU Guangqin, ZHANG Youning, et al. The self-powered CO2 gas sensor based on gas discharge induced by triboelectric nanogenerator[J]. Nano Energy, 2018, 53:898-905. [36] CHENG Jia, DING Wenbo, ZI Yunlong, et al. Triboelectric microplasma powered by mechanical stimuli[J]. Nature Communications X, 2018, 9:3733. [37] NIE Jinhui, CHEN Xiangyu, WANG Zhonglin. Electrically responsive materials and devices directly driven by the high voltage of triboelectric nanogenerators[J]. Advanced Functional Materials, 2019, 29(41):1806351-1806371. [38] FAN Fengru, LIN Long, WANG Zhonglin, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters. 2012, 12(6):3109-3114. [39] 杨潍旭, 王晓力, 陈平. 摩擦纳米发电机表面织构的优化设计[J]. 机械工程学报, 2020, 56(3):130-136. YANG Weixu, WANG Xiaoli, CHEN Ping. Optimal design of surface texture in triboelectric nanogenerators[J]. Journal of Mechanical Engineering, 2020, 56(3):130-136. [40] HUANG Ji, FU Xianpeng, LIU Guoxu, et al. Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing[J]. Nano Energy, 2019, 62:638-644. [41] CHENG Xiaoliang, MENG Bo, CHEN Xuexian, et al.Single-step fluorocarbon plasma treatment-induced wri-nkle structure for high-performance triboelectric nanogenerator[J]. Nano Micro Small, 2016, 12(2):229-236. [42] 李清泉, 郝玲艳. 沿面介质阻挡放电等离子体及其应用[J]. 高电压技术, 2016, 42(4):1079-1090. LI Qingquan, HAO Lingyan. Surface dielectric barrier discharge plasma and its applications[J]. High Voltage Engineering, 2016, 42(4):1079-1090. [43] MOUNIR L, TAMER A. Arc-free atmospheric pressure cold plasma jets:A review[J]. Plasma Processes and Polymers, 2007, 4(9):777-788. [44] YU Zhe, YANG Haidong, DU Huan, et al. Transition of streamer, corona and glow discharges in needle-to-plane dielectric barrier discharge at atmospheric pressure air[J]. High Voltage Engineering, 2013, 39(10):2553-2559. [45] CHENG Gang, ZHENG Haiwu, YANG Feng, et al. Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip-electrode air-discharging and application for UV sensing[J]. Nano Energy, 2018, 44:208-216. [46] ZHAI Cong, CHOU Xiujian, HE Jian, et al. An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators[J]. Applied Energy, 2018, 231:1346-1353. [47] WONG Manchung, XU Wei, HAO Jianhua. Microplasma-discharge-based nitrogen fixation driven by triboelectric nanogenerator toward self-powered mechano-nitrogenous fertilizer supplier[J]. Advanced Functional Materials, 2019, 29(44):1904090. [48] ZI Yunlong, NIU Simiao, WANG Jie, et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators[J]. Nature Communication, 2015, 6:8376. [49] ZHANG Hemin, MARTY F, XIA Xin, et al. Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters[J]. Nature Communications, 2020, 11:3221. [50] GO D B, POHLMAN D A. A mathematical model of the modified Paschen's curve for breakdown in microscale gaps[J]. Journal of Applied Physics, 2010, 107:103303. [51] HE Shanshan, ZHANG Zengxing, ZHAI Cong, et al. Triboelectric harvesting by a dual-tip peak power multiplier under airtight condition[J]. Energy Technology, 2020, 8(6):1901265. [52] KIM J, CHO H, HAN M, et al. Ultrahigh power output from triboelectric nanogenerator based on serrated electrode via spark discharge[J]. Advanced Energy Materials, 2020, 10(44):2002312. [53] CHEN Xiangyu, JIANG Tao, SUN Zhuo, et al. Field emission device driven by self-powered contact-electrification:Simulation and experimental analysis[J]. Applied Physics Letters, 2015, 107(11):114103. [54] LIU Fan, LIU Yuan, LU Yijia, et al. Electrical analysis of triboelectric nanogenerator for high voltage applications exampled by DBD microplasma[J]. Nano Energy, 2019, 56:482-493. [55] 张传萍. 场发射显示器件制备中的几个关键问题的研究[D]. 长春:吉林大学, 2003. ZHANG Chuanping. The study to the key problems of fabrication process of filed emission display devices[D]. Changchun:Jilin University, 2003. [56] ZI Yunlong, WU Changsheng, DING Wenbo, et al. Field emission of electrons powered by a triboelectric nanogenerator[J]. Advanced Functional Materials, 2018, 28(21):1800610. [57] LI Anyin, ZI Yunlong, GUO Hengyu, et al. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry[J]. Nature Nanotechnology, 2017, 12(5):481-487. [58] BOUZA M, LI Yafeng, WU Changsheng, et al. Large-area triboelectric nanogenerator mass spectrometry:Expanded coverage, double-bond pinpointing, and supercharging[J]. Journal of The American Society for Mass Spectrometry, 2020, 31(3):727-734. [59] BOUZA M, LI Anyin, FORSYTHE J G, et al. Compositional characterization of complex protopeptide libraries via triboelectric nanogenerator Orbitrap mass spectrometry[J]. Rapid Communications in Mass Spectrimetry, 2019, 33(16):1293-1300. [60] WANG Zhaozheng, SHI Yunxu, LIU Fan, et al. Distributed mobile ultraviolet light sources driven by ambient mechanical stimuli[J]. Nano Energy, 2020, 74:104910. [61] HAN Kai, LUO Jianjun, FENG Yawei, et al. Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators[J]. Energy & Environmental Science, 2020, 13(8):2450-2458. [62] LI Xunjia, LUO Jianjun, HAN Kai, et al. Stimulation of ambient energy generated electric field on crop plant growth[J]. Nature Food, 2022, 3(2):133-142. [63] GUO Hengyu, CHEN Jie, WANG Longfei, et al. A highly efficient triboelectric negative air ion generator[J]. Nature Sustainability, 2020, 4(2):147-153. [64] ZHU Guang, PAN Caofeng, GUO Wenxi, et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning[J]. Nano Letters, 2012, 12(9):4960-4965. [65] WANG Sihong, LIN Long, XIE Yannan, et al. Sliding-triboelecttic nanogenerators based on in-plane charge-separation mechanism[J]. Nano Letters, 2013, 13(5):2226-2233. [66] YANG Ya, ZHOU Yusheng, ZHANG Hulin, et al. A single-electrode based triboelectric nanogenerator as self-powered tracking system[J]. Advanced Materials, 2013, 25(45):6594-6601. [67] WANG Sihong, XIE Yannan, NIU Simiao, et al. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes[J]. Advanced Materials, 2014, 26(18):2818-2824. [68] WANG Sihong, LIN Long, XIE Yannan, et al. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism[J]. Nano letters, 2013, 13(5):2226-2233. [69] YU Yanhao, WANG Xudong. Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development[J]. Extreme Mechanics Letters, 2016, 9:514-530. [70] MIAO Liming, CHENG Xiaoliang, CHEN Haotian, et al. Fabrication of controlled hierarchical wrinkle structure on PDMS by one-step C4F8 plasma treatment[J]. Journal of Micromechanics and Microengineering, 2018, 28(1):015007. [71] SHAO Tao, WANG Ruixue, ZHANG Cheng, et al. Atmospheric-pressure pulsed discharges and plasmas:Mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1):14-20. [72] KO Y H, NAGARAJU G, Lee S H, et al. PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays[J]. American Chemical Society, 2014, 6(9):6631-6637. [73] QIAO Haiyu, ZHANG Yun, HUANG Zhigao, et al. 3D printing individualized triboelectric nanogenerator with macro-pattern[J]. Nano Energy, 2018, 50:126-132. [74] CHEGN Guanggui, JIANG Shiyu, LI Kai, et al. Effect of argon plasma treatment on the output performance of triboelectric nanogenerator[J]. Applied Surface Science, 2017, 412:350-356. [75] KANNO I, NOMOTO K, NISHIJIMA S, et al. Tribological properties of aluminum modified with nitrogen ion implantation and plasma treatment[J]. Beam Interactions with Materials and Atoms, 1991, 59-60:920-924. [76] CARDINAUD C, PEIGNON M C, TESSIER P Y. Plasma etching:Principles, mechanisms, application to micro-and nano-technologies[J]. Applied Surface Science, 2000, 164(1):72-83. [77] YANG Chiirong, CHEN Changda, CHENG Chia, et al. Thermal conductivity enhancement of AlN/PDMS composites using atmospheric plasma modification techniques[J]. International Journal of Thermal Sciences, 2020, 155(1):106431-106440. [78] HIRANO M, HASHIMOTO M, MIURA K, et al. Fabrication of antibacterial nanopillar surface on AISI 316 stainless steel through argon plasma etching with direct current discharge[J]. Surface and Coatings Technology, 2021, 406(1):126680-126688. [79] OSIPOV A A, IANKEVICH G A, SPESHILOVA A B, et al. High-temperature etching of SiC in SF6/O2 inductively coupled plasma[J]. Scientific Reports, 2020, 10(1):19977 [80] LI Huayang, SU Li, KUANG Shuangyang, et al. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy[J]. Advanced Functional Materials, 2015, 25(35):5691-5697. [81] KIM D Y, KIM H S, JUNG J H. Ar plasma treated polytetrafluoroethylene films for a highly efficient triboelectric generator[J]. Journal of the Korean Physical Society, 2016, 69(11):1720-1723. [82] CHENG Guanggui, JIANG Shiyu, LI Kai, et al. Effect of argon plasma treatment on the output performance of triboelectric nanogenerator[J]. Applied Surface Science, 2017, 412(1):350-356. [83] ZHANG Lu, CHENG Li, SU Chen, et al. Controllable fabrication of ultrafine oblique organic nanowire arrays and their application in energy harvesting[J]. Nanoscale, 2015, 7(4):1285-1289. [84] LIM N, HONG D, KIM C, et al. Inductively coupled plasma surface modification of polyethylene terephthalate and application in a triboelectric generator[J]. Thin Solid Films, 2017, 637(1):27-31. [85] ZHANG Xiaosheng, HAN Mengdi, WANG Renxin, et al. High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment[J]. Nano Energy, 2014, 4(1):123-131. [86] LEE C, YANG S, CHOI D, et al. Chemically surface-engineered polydimethylsiloxane layer via plasma treatment for advancing textile-based triboelectric nanogenerators[J]. Nano Energy, 2019, 57(1):353-362. [87] 陈海军, 魏宏杰. 干法刻蚀工艺与设备[J]. 设备管理与维修, 2020(7):137-139. CHEN Haijun, WEI Hongjie. Dry etching process and equipment[J]. Plant Maintenance Engineering, 2020(7):137-139. [88] ZHU Xuemei, LEI Mingkai. Surface engineering of biomedical metallic materials by plasma-based low-energy ion implantation[J]. Current Applied Physics, 2005, 5(5):522-525. [89] KELKAR D S, BALASUBRAMANIAN V. Electrical and structural properties of Ar+implanted nylon-6 films[J]. Polymer International, 1997, 42(4):393-396. [90] LEE E H, RAO G R, MANSUR L K. Improved hardness and wear properties of B-ion implanted polycarbonate[J]. Journal of Materials Research, 1992, 7(7):1900-1911. [91] GAN Kang, LIU Hong, JIANG Lingling, et al. Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone[J]. Dental Materials, 2016, 32(11):263-274. [92] WANG Sihong, XIE Yannan, NIU Simiao, et al. Maximum surface charge density for triboelectric nanogenerators achieved by ionized air injection:methodology and theoretical understanding[J]. Advanced Materials, 2014, 26:6720-6728. [93] 刘杰. 等离子体浸没离子注入系统及其应用研究[D]. 兰州:兰州大学, 2009. LIU Jie. Research on the plasma immersion ion implantation system and its application[D]. Lanzhou:Lanzhou University, 2009. [94] SHAO Jiajia, TANG Wei, JIANG Tao, et al. A multi-dielectric-layered triboelectric nanogenerator as energized by corona discharge[J]. Nanoscale, 2017, 9(27):9668-9675. [95] ZHOU Tao, ZHANG Limin, XUE Fei, et al. Multilayered electret films based triboelectric nanogenerator[J]. Nano Research, 2016, 9(5):1442-1451. [96] KANNO I, NOMOTO K, NISHIJIMA S, et al. Tribological properties of aluminum modified with nitrogen ion implantation and plasma treatment[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 1991, 59-60:920-924. [97] ZHANG Dekun, WANG Qingliang, WANG Shibo. Research on nano-mechanical and micro-tribological behaviors of C+-implanted silicon[J]. Key Engineering Materials, 2007, 84:809-812. [98] WANG Sihong, XIE Yannan, NIU Simiao, et al. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection:Methodology and theoretical understanding[J]. Advanced Materials, 2014, 26(39):6720-6728. [99] XU Jing, ZOU Yongjiu, NASHALIAN A, et al. Leverage surface chemistry for high-performance triboelectric nanogenerators[J]. Frontiers in Chemistry, 2020, 8:577327. [100] LI Shuyao, FAN Yong, CHEN Huaqiang, et al. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation[J]. Energy & Environmental Science, 2019, 3:896-907. |
[1] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[2] | 王帅帅, 段振景, 刘吉宇, 李育恒, 王梓恒, 周瑜阳, 刘新, 宋金龙, 孙晶. 冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J]. 机械工程学报, 2024, 60(9): 338-350. |
[3] | 张春波, 吴成军, 袁浩天. 等离子体作用下不同脉冲数超快激光烧蚀过程中化学反应机制的数值模拟[J]. 机械工程学报, 2024, 60(8): 94-106. |
[4] | 喻明浩, 白锦旗, 王伟, 胡宇喆, 刘一凡. 双谐振结构同轴微波等离子体炬调谐特性分析[J]. 机械工程学报, 2024, 60(5): 169-182. |
[5] | 郭美玲, 杨雷, 李鹏阳, 许振涛, 许超愿, 王权岱, 李言. 氟等离子体对石墨烯纳晶碳膜的刻蚀加工及摩擦学性能调控[J]. 机械工程学报, 2024, 60(15): 216-226. |
[6] | 曹杰, 王政, 花镜, 张忠强, 程广贵, 丁建宁. 基于静电感应的非接触式手势解锁技术研究[J]. 机械工程学报, 2024, 60(11): 309-317. |
[7] | 李洲龙, 王锐, 范哲, 朱利民. 大气等离子体射流加工的热误差在线补偿方法[J]. 机械工程学报, 2023, 59(21): 75-84. |
[8] | 李玉海, 白清顺, 孙浩, 张鹏, 卢礼华, 杜云龙, 苗心向, 袁晓东, 刘昊, 韩伟. 大口径衍射光栅的污染损伤与清洗技术研究进展[J]. 机械工程学报, 2022, 58(9): 270-282. |
[9] | 魏斌, 庞洪臣, 杨芳, 赵志强, 钟英豪, 黄喜利, 林芳, 潘新祥. 基于摩擦纳米发电机的自供能低频振动传感器研究[J]. 机械工程学报, 2022, 58(20): 158-165. |
[10] | 张浩东, 王武宏, 陆逍, 谭海秋, 蒋晓蓓, 石健. 基于摩擦纳米发电机的车辆踏板运动量化模型[J]. 机械工程学报, 2022, 58(17): 215-225. |
[11] | 禹健, 郭艳婕, 杨雷. 固-液摩擦纳米发电机[J]. 机械工程学报, 2021, 57(21): 160-181. |
[12] | 肖渊, 刘进超, 吕晓来, 李红英, 代阳. CNT/PDMS介电层微结构成型及摩擦纳米发电机制备[J]. 机械工程学报, 2021, 57(15): 177-185. |
[13] | 王瑞雪, 叶巴丁, 孔祥号, 夏章川, 张子鹏, 李好义, 谢鹏程. 低温等离子体表面强化技术研究进展[J]. 机械工程学报, 2021, 57(12): 192-207. |
[14] | 杨潍旭, 王晓力, 陈平. 摩擦纳米发电机表面织构的优化设计[J]. 机械工程学报, 2020, 56(3): 130-136. |
[15] | 张弛, 付贤鹏, 王中林. 摩擦纳米发电机在自驱动微系统研究中的现状与展望[J]. 机械工程学报, 2019, 55(7): 89-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||