[1] ZHOU C. Chirped pulse amplification: review and prospective from diffractive optics[J]. Chinese Optics Letters, 2020, 18(11): 110502-110507. [2] BONOD N, NEAUPORT J. Diffraction gratings: from principles to applications in high-intensity lasers[J]. Advances in Optics and Photonics, 2016, 8(1): 156-199. [3] STRICKLAND D, MOUROU G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449. [4] PENG H S. Ultraintense solid-state lasers and applications to the frontiers of sciences(2)[J]. Chinese Journal of Lasers, 2006, 33(7): 721-729. [5] PENG H S. Ultraintense solid-state lasers and applications to the frontiers of sciences(1)[J]. Chinese Journal of Lasers, 2006, 33(7): 865-872. [6] LENG Yuxin. From chirped pulse amplification to high field laser physics: A brief introduction to the Nobel Prize in Physics 2018[J]. Chinese Journal of Nature, 2018, 40(6): 14-20. 冷雨欣. 从啁啾脉冲放大到强场激光物理——2018年诺贝尔物理学奖解读[J]. 自然杂志, 2018, 40(6): 14-20. [7] KELLY J H, WAXER L J, BAGNOUD V, et al. OMEGA EP: High-energy petawatt capability for the OMEGA laser facility[C]//Journal de Physique Ⅳ (Proceedings). EDP Sciences, 2006, 133: 75-80. [8] SHIRAGA H, FUJIOKA S, NAKAI M, et al. Fast ignition integrated experiments with Gekko and LFEX lasers[J]. Plasma Physics and Controlled Fusion, 2011, 53(12): 124029-124035. [9] DANSON C N, BRUMMITT P A, CLARKE R J, et al. Vulcan Petawatt — an ultra-high-intensity interaction facility[J]. Nuclear Fusion, 2004, 44(12): S239-S249. [10] CASNER A, CAILLAUD T, DARBON S, et al. LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics[J]. High Energy Density Physics, 2015, 17(2): 2-11. [11] LIDDELL H. Enhancing the performance of multilayer-dielectric diffraction gratings through cleaning process modifications and defect mitigation[D]. University of Rochester, 2013. [12] GRACEWSKI S M, BOYLAN S, LAMBROPOULOS J C, et al. Simulation of internal stress waves generated by laser-induced damage in multilayer dielectric gratings[J]. Optics Express, 2018, 26(14): 18412-18422. [13] HOWARD H P, AIELLO A F, DRESSLER J G, et al. Improving the performance of high laser damage threshold, multilayer dielectric pulse compression gratings through low-temperature chemical cleaning[J]. Applied Optics, 2013, 52(8): 1682-1692. [14] LIU Shijie, SHEN Jian, SHEN Zicai, et al. Near-field optical property of multi-layer dielectric gratings for pulse compressor[J]. Acta Physica Sinica, 2006, 55(9): 197-203. 刘世杰, 沈健, 沈自才, 等. 多层介质膜脉冲压缩光栅近场光学特性分析[J]. 物理学报, 2006, 55(9): 197-203. [15] KONG Weijing, LIU Shijie, SHENG Zicai, et al. Laser induced damage thresholds of multi-layer dielectric gratings and multi-layer dielectric mirrors[J]. Chinese Journal of Lasers, 2006, 33(4): 552-556. 孔伟金, 刘世杰, 沈自才, 等. 多层介质膜光栅和介质膜反射镜激光诱导损伤阈值研究[J]. 中国激光, 2006, 33(4): 552-556. [16] BOYD R D, BRITTEN J A, DECKER D E, et al. High-efficiency metallic diffraction gratings for laser applications[J]. Applied Optics, 1995, 34(10): 1697-1706. [17] GUAN H, JIN Y, LIU S, et al. Broadband trapeziform multilayer dielectric grating for femtosecond pulse compressor: design, fabrication, and analysis[J]. Laser Physics, 2013, 23(11): 1-26. [18] NEAUPORT J, BONOD N, HOCQUET S, et al. Mixed metal dielectric gratings for pulse compression[J]. Optics Express, 2010, 18(23): 23776-23783. [19] DING Yanchun, SHI Guangfeng, SHI Guoquan. Analysis of the stagnant characteristics of the material in the mechanical ruling process[J]. Journal of Mechanical Engineering, 2018, 54(19): 182-189. 丁艳春, 石广丰, 史国权. 机械刻划过程中的材料滞留特征分析[J]. 机械工程学报, 2018, 54(19): 182-189. [20] CHEN S, SHENG B, XU X, et al. Wet-cleaning of contaminants on the surface of multilayer dielectric pulse compressor gratings by the piranha solution[C]//5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. International Society for Optics and Photonics, 2010, 7655: 765522. [21] LIU Zhichao, ZHENG Yi, PAN Feng, et al. Effect of 1064nm laser conditioning on damage morphology change process on HfO2/SiO2 reflective film[J]. Infrared and Laser Engineering, 2017, 46(6): 56-62. 刘志超, 郑轶, 潘峰, 等. 1064nm激光预处理对HfO2/SiO2反射膜损伤形态转化影响研究[J]. 红外与激光工程, 2017, 46(6): 56-62. [22] WEI Yaowei, ZHANG Zhe, LIU Hao, et al. Study on laser pretreatment of HfO2/SiO2 thin films[J]. High Power Laser and Particle Beams, 2013, 25(12): 3338-3342. 卫耀伟, 张哲, 刘浩, 等. HfO2/SiO2薄膜的激光预处理作用研究[J]. 强激光与粒子束, 2013, 25(12): 3338-3342. [23] JITSUNO T, MURAKAMI H, MOTOKOSHI S, et al. Source of contamination in damage-test sample and vacuum[C]//Pacific Rim Laser Damage 2016: Optical Materials for High-Power Lasers. International Society for Optics and Photonics, 2016, 9983: 998316. [24] ASHE B, MARSHALL K L, MASTROSIMONE D. Minimizing contamination to multilayer dielectric diffraction gratings within a large vacuum system[J]. Optical System Contamination Effects Measurements & Control, 2008, 7069(2): 1-10. [25] JITSUNO T, MURAKAMI H, MOTOKOSHI S, et al. Oil-contamination problem in large-scale pulse-compressor[J]. Proceedings of SPIE the International Society for Optical Engineering, 2010, 7842(5): 1-7. [26] SHAN Y G, HE H B, WANG Y, et al. Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm[J]. Optics Communications, 2011, 284(2): 625-629. [27] KOZLOV A A, LAMBROPOULOS J C, OLIVER J B, et al. Mechanisms of picosecond laser-induced damage in common multilayer dielectric coatings[J]. Scientific Reports, 2019, 9(1): 1-15. [28] CUI Y, ZHAO Y, YU H, et al. Impact of organic contamination on laser-induced damage threshold of high reflectance coatings in vacuum[J]. Applied Surface Science, 2008, 254(18): 5990-5993. [29] BRITTEN J A, NGUYEN H T. Method for cleaning diffraction gratings: US, US2008047584[P]. 2008-02-18. [30] BAI Qingshun, GUO Yongbo, CHEN Jiaxuan, et al. Research and development of ultra-clean manufacturing[J]. Journal of Mechanical Engineering, 2016, 52(19): 145-153. 白清顺, 郭永博, 陈家轩, 等. 超洁净制造的研究与发展[J]. 机械工程学报, 2016, 52(19): 145-153. [31] PAPERNOV S, SCHMID A W. Laser-induced surface damage of optical materials: Absorption sources, initiation, growth, and mitigation[C]//Laser-Induced Damage in Optical Materials: 2008. International Society for Optics and Photonics, 2008, 7132: 71321J. [32] STUART B C, FEIT M D, HERMAN S, et al. Optical ablation by high-power short-pulse lasers[J]. Journal of the Optical Society of America B, 1996, 13(2): 459-468. [33] STUART B C, FEIT M D, RUBENCHIK A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 1995, 74(12): 2248-2252. [34] CARR C W, TRENHOLME J B, SPAETH M L. Effect of temporal pulse shape on optical damage[J]. Applied Physics Letters, 2007, 90(4): 041110-041117. [35] ALESSI D A, CARR C W, HACKEL R P, et al. Picosecond laser damage performance assessment of multilayer dielectric gratings in vacuum[J]. Optics Express, 2015, 23(12): 15532-15544. [36] MA P, PAN F, CHEN S, et al. Contamination process and laser-induced damage of HfO2/SiO2 coatings in vacuum[J]. Chinese Optical Letters, 2009, 7(7): 643-645. [37] VILLAHERMOSA R M, STRAKA S A, WEILLER B H, et al. Managing contamination-enhanced Laser Induced Damage[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2008, 7069(5): 1-9. [38] SCURLOCK C T. A phenomenological study of the effect of trace contamination on lifetime reduction and laser-induced damage for optics[C]//Laser-Induced Damage in Optical Materials: 2004. International Society for Optics and Photonics, 2005, 5647: 86-94. [39] RIEDE W, ALLENSPACHER P, SCHRODER H, et al. Laser-induced hydrocarbon contamination in vacuum[C]//Laser-Induced Damage in Optical Materials: 2005. International Society for Optics and Photonics, 2006, 5991: 59910H. [40] PEREIRA A, COUTARD J G, BECKER S, et al. Impact of organic contamination on 1064-nm laser-induced damage threshold of dielectric mirrors[C]//Laser-Induced Damage in Optical Materials: 2006. International Society for Optics and Photonics, 2007, 6403: 64030I. [41] LING X, ZHAO Y, LIU X, et al. Comparative study of laser-induced damage of two reflective coatings in vacuum due to organic contamination[J]. Optik-International Journal for Light and Electron Optics, 2012, 123(16): 1453-1456. [42] MARSHALL K L, CULAKOVA Z, ASHE B, et al. Vapor-phase-deposited organosilane coatings as hardening agents for high-peak-power laser optics[C]//Thin-Film Coatings for Optical Applications Ⅳ. International Society for Optics and Photonics, 2007, 6674: 667407. [43] MANENKOV A A. Fundamental mechanisms of laser-induced damage in optical materials: Today's state of understanding and problems[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 53(1): 010901-010901. [44] SHAN Y, HE H, WEI C, et al. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating[J]. Applied Optics, 2010, 49(22): 4290-4295. [45] QING Y F, LI L, TU Q Z, et al. Ab initio molecular dynamics simulation of the effect of impurities on laser-induced damage of fused silica[J]. Physica B: Condensed Matter, 2018, 545(5): 549-558. [46] ZOU X, KONG F, JIN Y, et al. Influence of nodular defect size on metal dielectric mixed gratings for ultra-short ultra-high intensity laser system[J]. Optical Materials, 2019, 91(5): 177-182. [47] BUDE J, CARR C W, MILLER P E, et al. Particle damage sources for fused silica optics and their mitigation on high energy laser systems[J]. Optics Express, 2017, 25(10): 11414-11435。 [48] RAMAN R N, ELHADJ S, NEGRES R A, et al. Characterization of ejected fused silica particles following surface breakdown with nanosecond pulses[J]. Optics Express, 2012, 20(25): 27708-27724. [49] CANHAM J S. Molecular contamination damage prevention: Lessons learned from vacuum laser operation[C]//Laser-Induced Damage in Optical Materials: 2005. International Society for Optics and Photonics, 2006, 5991: 59910E. [50] MACLEOD H A, RICHMOND D. Moisture penetration patterns in thin films[J]. Thin Solid Films, 1976, 37(2): 163-169. [51] PERRY M D, STUART B C, BANKS P S, et al. Ultrashort-pulse laser machining of dielectric materials[J]. Journal of Applied Physics, 1999, 85(9): 6803-6810. [52] KONG W, LIU S, SHEN J, et al. Study on LIDT of MDGs for different fabrication processes[J]. Microelectronic Engineering, 2006, 83(4-9): 1426-1429. [53] KONG F, HUANG H, WANG L, et al. Femtosecond laser induced damage of pulse compression gratings[J]. Optics & Laser Technology, 2017, 97(2): 339-345. [54] CHEN Shangbi. Cleaning of multilayer dielectric pulse compressor gratings and research of laser induced damage threshold[D]. Hefei: University of Science and Technology of China, 2012. 陈上碧. 多层介质膜脉宽压缩光栅的清洗及阈值研究[D]. 合肥: 中国科学技术大学, 2012. [55] ZHAGN Haifeng, ZHANG Ji, WANG Qinfeng. Removal of grease contamination on the surface of large aperture diffraction grating[J]. Annual Report of China Institute of Atomic Energy, 2013, 25(1): 135-176. 张海峰, 张骥, 王钦锋. 大口径衍射光栅表面油脂污染的清除[J]. 中国原子能科学研究院年报, 2013, 25(1): 135-136. [56] ELLA FIELD, JOHN B, DAMON K. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for ZBacklighter optics at Sandia National Laboratories[J]. Optical Engineering, 2020, 53(12): 122516-122533. [57] ASHE B, MARSHALL K L, GIACOFEI C, et al. Evaluation of cleaning methods for multilayer diffraction gratings[C]//Laser-Induced Damage in Optical Materials: 2006. International Society for Optics and Photonics, 2007, 6403: 64030O. [58] LIDDELL H P H, LAMBROPOULOS J C, Jacobs S D. Thermomechanical model to assess stresses developed during elevated-temperature cleaning of coated optics[J]. Applied Optics, 2014, 53(26): 5865-5878. [59] LIDDELLL H P H, MEHROTRA K, LAMBROPOULOS J C, et al. Fracture mechanics of delamination defects in multilayer dielectric coatings[J]. Applied Optics, 2013, 52(32): 7689-7698. [60] CHEN S, SHENG B, QIU K, et al. Cleaning method for improving laser induced damage threshold of multilayer dielectric pulse compressor gratings[J]. High Power Laser & Particle Beams, 2012, 24(11): 2631-2636. [61] DIXIT S N, BRITTEN J A, HYDE R A, et al. Fabrication and applications of large-aperture diffractive optics[C]//Lithographic and Micromachining Techniques for Optical Component Fabrication. International Society for Optics and Photonics, 2001, 4440: 101-108. [62] CHEN F F, CHANG J P. Lecture notes on principles of plasma processing[M]. New York: Springer Science & Business Media, 2012. [63] HONG Yilin, LIU Liangbao, ZHOU Xiaowei, et al. Development of plasma a photoresist descum system for large-aperture diffraction gratings[J]. Vacuum, 2008, 45(3): 25-27. 洪义麟, 刘良保, 周小为, 等. 用于大尺寸衍射光栅的光刻胶残余物的灰化系统研制[J]. 真空, 2008, 45(3): 25-27. [64] RUIGOMEZ I, GONZALEZ E, GUERRA S, et al. Evaluation of a novel physical cleaning strategy based on HF membrane rotation during the backwashing/relaxation phases for anaerobic submerged MBR[J]. Journal of Membrane Science, 2017, 526(5): 181-190. [65] RAZA R, AHMED F, KHAN A, et al. Effect of metal-reinforced UV-O3-TETA functionalized MWCNTs on thermomechanical and radiation-resistant properties of PMMA[J]. Materials Today Communications, 2020, 24(5): 101181. [66] XUE J, ZHANG J, QIAO J, et al. Effects of chlorination and combined UV/Cl2 treatment on endotoxin activity and inhalation toxicity of lipopolysaccharide, gram-negative bacteria and reclaimed water[J]. Water Research, 2019, 155(10): 124-130. [67] NARAYANSWAMI N. A theoretical analysis of wafer cleaning using a cryogenic aerosol[J]. Journal of the Electrochemical Society, 1999, 146(2): 767-775. [68] CASE C, MCCLAIN J. Developing supercritical carbon dioxide processing in microelectronics applications[C]//Micro. 11444 W Olympic Blvd, Suite 900, Los Angeles, CA 90064 USA: Canon Communications Inc, 2004, 22(1): 33-38. [69] MIKAMI K, PAPERNOV S, MOTOKOSHI S, et al. Detection of the laser-damage onset in optical coatings by the photothermal-deflection method[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2014, 9237(21): 1-6. [70] MEHROTRA K, TAYLOR B N, KOZLOV A A, et al. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings[J]. Applied Optics, 2017, 56(9): 2494-2503. |