• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (18): 141-149.doi: 10.3901/JME.2022.18.141

• 技术开发 • 上一篇    下一篇

扫码分享

面向智能汽车人机协同转向控制的强化学习变阻抗人机交互方法

韩嘉懿, 赵健, 朱冰   

  1. 吉林大学汽车仿真与控制国家重点实验室 长春 130022
  • 收稿日期:2021-11-01 修回日期:2022-03-22 出版日期:2022-09-20 发布日期:2022-12-08
  • 通讯作者: 朱冰(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为智能汽车决策、规划与测试。E-mail:zhubing@jlu.edu.cn
  • 作者简介:韩嘉懿,男,1992年出生,博士研究生。主要研究方向为智能汽车人机共驾;E-mail:jiayi.han@qq.com
  • 基金资助:
    国家自然科学基金资助项目(52172386)。

Variable Impedance-based Human-machine Interaction Method Using Reinforcement Learning for Shared Steering Control of Intelligent Vehicle

HAN Jiayi, ZHAO Jian, ZHU Bing   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022
  • Received:2021-11-01 Revised:2022-03-22 Online:2022-09-20 Published:2022-12-08

摘要: 人机交互已成为智能汽车设计的核心要素之一,针对人机协同转向控制问题,提出一种基于强化学习的智能汽车变阻抗人机交互方法。首先基于虚拟阻抗的思想提出针对转向控制的人机交互框架,用于描述控制权分配的连续过程;其次在此基础上,设计基于变阻抗的人机协同转向控制算法,通过改变虚拟阻抗动态调整控制权分配;再次开发基于深度确定性策略梯度(Deep deterministic policy gradient,DDPG)的阻抗调协策略,根据驾驶人操纵行为确定虚拟阻抗;最后进行驾驶人在环试验,试验结果表明,与常规方法相比,所提出的方法能够使自动驾驶系统根据驾驶人的操纵行为让渡一定的控制权给驾驶人,人机交互过程平稳、柔和,易于驾驶人适应,对驾驶人的影响更小,降低了驾驶人的操纵负荷,同时自动驾驶系统还能够生成适当大小的控制转矩向驾驶人表达自身的驾驶意图,实现有效的人机交互。

关键词: 智能汽车, 人机交互, 协同转向, 阻抗控制, 强化学习

Abstract: Human-Machine interaction has become one of the focuses of intelligent vehicle design. Aiming at the problem of human-machine shared steering control, a human-machine interaction method with variable impedance based on reinforcement learning is proposed. Firstly, A human-machine interaction framework for shared steering is built based on virtual impedance, which can describe the continuous process of control authority distribution. Secondly, on this basis, a variable impedance-based human-machine shared steering control method is designed, which can dynamically distribute control authority by changing virtual impedance. Thirdly, an impedance tuning strategy based on deep deterministic policy gradient (DDPG) is developed to determine the virtual impedance according to the driver's steering behavior. The driver-in-the-loop experiment shows that, compared with the conventional method, the method proposed can make the automation system yield a certain degree of control authority to the driver according to the driver’s steering behavior, and make the interaction process smooth and easy for the driver to adapt to. The method has a less bad influence on the driver and reduces the driver's steering load, and meanwhile, the automation system can also generate an appropriate control torque to express its intention to the driver, and realize the effective human-machine interaction.

Key words: intelligent vehicle, human-machine interaction, shared steering, impedance control, reinforcement learning

中图分类号: