[1] NING Changting. Research on failure form, design criteria, design procedure and standardization of mechanical parts[J]. Guide of Sci-tech Magazine, 2013(32): 124. 宁长亭. 机械零件的失效形式、设计准则、设计步骤及标准化研究[J]. 科技致富向导, 2013(32): 124. [2] MA Pengbo, LI Liqiao, WEN Baoqin, et al. Design and parameter optimization of spiral-dragon type straw chopping test rig[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(1): 47-56. [3] WANG Tao, WEN Baoqin, KAN Za, et al. Wear behavior of different materials applied on horizontal mixer blades used in the processing of total mixed rations[J]. Transactions of the ASABE, 2019, 62(6): 1743-1753. [4] WANG Tao, KAN Za, LI Jingbin, et al. Effect of different elements on wearing character of TMR horizontal mixer blade[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 89-93, 228. 王涛, 坎杂, 李景彬, 等. 不同元素对卧式TMR搅拌机刀片磨损性能影响[J]. 中国农机化学报, 2019, 40(8): 89-93, 228. [5] ZHANG Keping, ZHANG Wei, FAN Hongpeng. Wear performance research of different composition wheat powder on low chromium white iron[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 91-94, 111. 张克平, 张炜, 樊宏鹏. 不同成分小麦粉料对低铬白口铁磨损性能研究[J]. 中国农机化学报, 2016, 37(10): 91-94, 111. [6] HE Qiang, LI Anling, QU Wenhong, et al. Investigation on friction and wear properties of high-temperature bearing steel 9Cr18Mo[J]. Materials Research-ibero- american Journal of Materials, 2018, 21(3). [7] LOU Baiyang, CHEN Zhen, BAI Wanjin, et al. Structure and erosion resistance of Ni60A/SiC coatting by laser cladding[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 643-646. [8] ZHANG Weiping, LIU Shuo. Microstructure of Fe-Ti-B composite coating prepared by laser cladding[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(4): 558-564. [9] GUO Jingkun. Multiphase material-an attractive trend for material research[J]. Research & Development of the World Science and Technology, 2000, 22(1): 17-18. [10] ZENG Dawen, XIA Hui, XIE Changsheng. Microstructure and solidification process of the laser clad Ni alloy[J]. Rare Metal Materials and Engineering, 2000, 29(2): 109-113. [11] SILVAIN J F, NIINO H, YABE A. Nucleation and growth of surface microstructures on Nd: YAG laser ablated elasromer/carbon composite[J]. Composites: Part A, Applied Science and Manufacturing, 2000, 31(5): 469-478. [12] LIU Shuo, ZHANG Weiping. Microstructure reinforced Ni-base alloy composite coating by laser cladding[J]. Transactions of the China Welding Institution, 2005, 26(2): 13-16. [13] LI Jianing. Laser cladding technology and application[M]. Beijing: Chemical Industry Press, 2015. 李嘉宁. 激光熔覆技术及应用[M]. 北京: 化学工业出版社, 2015. [14] PANG Yibin. Microstructure and properties of the coating produced by laser cladding with Ni-based composite powder[D]. Lanzhou: Lanzhou University of Technology, 2020. 庞义斌. Ni基复合粉末介入的激光熔覆层组织和性能[D]. 兰州: 兰州理工大学, 2020. [15] WU Zupeng, LI Tao, LI Qi, et al. Process optimization of laser cladding Ni60A alloy coating in remanufacturing[J]. Optics and Laser Technology, 2019, 120: 105718. [16] WANG Song. Surface modification of E690A steel with laser cladded Ni60A alloy coatings[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(4): 336-340. 王松. 功率对暖通E690钢激光熔覆Ni60A涂层结构和摩擦性能的影响[J]. 真空科学与技术学报, 2021, 41(4): 336-340. [17] YU Xiantao. Research on the Ni based alloy cladding on Al surface by laser and its tribologicial characteristics[D]. Wuhan: Wuhan University of Technology, 2005. 余先涛. 铝合金表面激光熔覆Ni基合金及其摩擦学特性研究[D]. 武汉: 武汉理工大学, 2005. [18] LI Yunfeng, SHI Yan. Investigation on Microstructure and performance of wear-resistant and impact-resistant composite coating produced by laser cladding[J]. Journal of Mechanical Engineering, 2021, 57(12): 237-246. 李云峰, 石岩. 激光熔覆耐磨耐冲击复合涂层组织与性能研究[J]. 机械工程学报, 2021, 57(12): 237-246. [19] QU Ping, MA Yuejin, ZHAO Jianguo, et al. Microstructure and performance of in-situ synthesis Ti(C, N)-WC/Ni60A matrix composites coating[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 73-81. [20] MA Shibang, SU Binbin, WANG Xu, et al. Wear resistance of SiC/Ni composite coating based on laser cladding[J]. Journal of Materials Engineering, 2016, 44(1): 77-82. 马世榜, 苏彬彬, 王旭, 等. 基于激光熔SiC/Ni复合涂层的耐磨性[J]. 材料工程, 2016, 44(1): 77-82. [21] KAUSHAL S, GUPTA D, BHOWMICK H. Investigation of Dry Sliding Wear Behavior of Ni–SiC Microwave Cladding[J]. Journal of Tribology-transactions of The Asme, 2017, 139(4): 041603. [22] ZHAO Longzhi, LIU Wu, LIU Dejia, et al. Effect of SiC content on microstructureand wear resistance of laser cladding SiC/Ni60A composite coating[J]. Key Engineering Materials, 2017, 45(3): 88-94. 赵龙志, 刘武, 刘德佳, 等. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94. [23] YUAN Qinglong, FENG Xudong, CAO Jingjing, et al. Effect of technological parameters on microstructure of Ni-based alloy coating by laser surface remelting[J]. Material & Heat Treatment, 2010, 39(14): 92-95. 袁庆龙, 冯旭东, 曹晶晶, 等. 工艺参数对激光熔覆层组织的影响[J]. 热加工工艺, 2010, 39(14): 92-95. [24] YAN Yong, WANG Hongli. Study on laser cladding strengthening technology for surface[J]. Journal of Heilongjiang Bayi Agricultural University, 2020, 32(1): 78-82, 108. 闫勇, 王宏立. 深松铲尖表面激光熔覆强化试验研究[J]. 黑龙江八一农垦大学学报, 2020, 32(1): 78-82, 108. [25] YE Pengyun. Research on laser surface enhancement of mower blade[D]. Fuzhou: Fujian Agricultural and Forestry University, 2016. 叶鹏云. 割草机刀片激光表面强化的研究[D]. 福州: 福建农林大学, 2016. [26] YANG Ruirui. Research on microstructure and properties of Ni60A alloy laser cladded coatings reinforced by nano-SiC[D]. Shengyang: Northeastern University, 2017. 杨瑞端. 纳米SiC增强Ni60A激光熔覆合金组织性能的研究[D]. 沈阳: 东北大学, 2017. [27] XIU Mingsan, LI Jianfeng, LI Huadeng, et al. Influence on powders and process parameters on bonding shear strength in laser cladding[J]. Journal of Mechanical Engineering, 2017, 53(9): 209-216. 许明三, 李剑峰, 李驊登, 等. 激光熔覆粉料和工艺参数对45钢基体与熔覆层结合强度的影响研究[J]. 机械工程学报, 2017, 53(9): 209-216. [28] HUANG Jianhong. Hardness design of anti-wear components in agricultural machinery[J]. Metal Heat Treatment, 2001(7): 7-11. 黄建洪. 农机耐磨零件的硬度设计[J]. 金属热处理, 2001(7): 7-11. [29] HUEBNER J, KATA D, KUSINSKI J, et al. Microstructure of laser cladded carbide reinforced inconel 625 alloy for turbine blade application[J]. Ceramics International, 2017(43): 8677-8684. [30] CORREA E O, ALCANTARA N G, VALERIANO L C, et al. The effect of microstructure on abrasive wear of a Fe-Cr-C-Nb hardfacing alloy deposited by the open arc welding process[J]. Surface & Coatings Technology, 2015, 276(6): 479-484. [31] ALIDOKHT S A, MANIMUNDA P, YUE S, et al. Cold spray deposition of a Ni-WC composite coating and its dry sliding wear behavior[J]. Surface & Coatings Technology, 2016, 308 (9): 424-434. [32] STOTT F H, WOOD G. The influence of oxides on the friction and wear of alloys[J]. Tribology International, 1978, 11(4): 211-218. [33] STOTT F H, LIN D, WOOD G. The structure and mechanism of formation of the 'glaze' oxide layers produced on nickel-based alloys during wear at high temperatures[J]. Corrosion Science, 1973, 13(6): 449-469. [34] LASHGARI H R, CHARLIE K, ADABIFIROOZJAEI E, et al. Microstructure, post thermal treatment response, and tribological properties of 3D printed 17-4 PH stainless steel[J]. Wear, 2020, 456(2): 43-71. |