[1] REN Zunsong. Study on impact vibration of wheel rail system with 3D flat wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(15): 78-85. 任尊松. 车轮踏面三维扁疤轮轨系统冲击振动研究[J]. 机械工程学报, 2018, 54(15): 78-85. [2] DENG Wenhao, JIN Weidong. A new method for wheel tread flat recognition based on adaptive shape lifting wavelet[J]. Journal of Vibration and Shock, 2015, 34(21): 45-48, 88. 邓文豪, 金炜东. 一种基于自适应形态提升小波的车轮踏面擦伤识别新方法[J]. 振动与冲击, 2015, 34(21): 45-48, 88. [3] ZHOU Xuan, CHEN Guangxiong, ZHAO Xin. Detection method of wheel tread flat based on empirical mode decomposition and neural network[J]. Journal of Lubrication and Seal, 2015, 40(6): 13-18, 24. 周璇, 陈光雄, 赵鑫. 基于经验模式分解和神经网络的车轮踏面擦伤检测方法[J]. 润滑与密封, 2015, 40(6): 13-18, 24. [4] SONG Zhiming. Research on image detection algorithm of train wheel tread flat[D]. Chengdu: Southwest Jiaotong University, 2012. 宋志明. 列车车轮踏面擦伤图像检测算法研究[D]. 成都: 西南交通大学, 2012. [5] KRUMMENACHER G, ONG C S, KOLLER S, et al. Wheel defect detection with machine learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 9(4): 1176-1187. [6] LI Y, ZUO M J, LIN J, et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter[J]. Mechanical Systems and Signal Processing, 2017, 84: 642-658. [7] BRIZUELA J, IBANEZ A, NEVADO P, et al. Railway wheels flat detector using doppler effect[C]// International Congress on Ultrasonics, January 11-17, 2009, Univ Santiago Chile, Santiago. Chile: Garreton, LG, 2010: 811-817. [8] NOWAKOWSKI T, KOMORSKI P, SZYMANSKI G M, et al. Wheel-flat detection on trams using envelope analysis with Hilbert transform[J]. Latin American Journal of Solids and Structures, 2019, 16(1): 51-67. [9] ZHOU C, GAO L, XIAO H, et al. Railway wheel flat recognition and precise positioning method based on multisensor arrays[J]. Applied Sciences-Basel, 2020, 10(4): 1297. [10] LIU X Z, NI Y Q. Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques[J]. Smart Structures and Systems, 2018, 21(5): 687-694. [11] LIU X Z, XU C, NI Y Q. Wayside detection of wheel minor defects in high-speed trains by a bayesian blind source separation method[J]. Sensors, 2019, 19(18): 27-43. [12] SHI Hongmei, ZHAO Rong, YU Zujun, et al. Research on detection method of flat wheel scar based on rail vibration response analysis[J]. Journal of Vibration and Shock, 2016, 35(10): 24-32, 54. 史红梅, 赵蓉, 余祖俊, 等. 基于钢轨振动响应分析的车轮扁疤检测方法研究[J]. 振动与冲击, 2016, 35(10): 24-32, 54. [13] ZHAO Rong, SHI Hongmei. Research on high speed train wheel flat recognition algorithm based on high-order spectral feature extraction[J]. Journal of Mechanical Engineering, 2017, 53(6): 102-109. 赵蓉, 史红梅. 基于高阶谱特征提取的高速列车车轮擦伤识别算法研究[J]. 机械工程学报, 2017, 53(6): 102-109. [14] ZHAI Wanming. Dynamics of vehicle-rail coupling[M]. Beijing: Science Press, 2007. 翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2007. [15] SHI Ying, LIN Jianhui, ZHUANG Zhe, et al. Fault diagnosis of pantograph crack based on time-frequency decomposition of vibration signals and sample entropy [J]. Journal of Vibration and Shock, 2019, 38(8): 180-187. 施莹, 林建辉, 庄哲, 等. 基于振动信号时频分解-样本熵的受电弓裂纹故障诊断[J]. 振动与冲击, 2019, 38(8): 180-187. [16] DENG Feiyue, TANG Guiji. Intelligent diagnosis method of rolling bearing based on time-wavelet energy spectrum sample sntropy[J]. Journal of Vibration and Shock, 2017, 36(9): 28-34. 邓飞跃, 唐贵基. 基于时间-小波能量谱样本熵的滚动轴承智能诊断方法[J]. 振动与冲击, 2017, 36(9): 28-34. [17] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition, July 27-30, Seattle. WA: IEEE, 2016: 770-778. |