[1] ZHAO Xin. Discuss of invalidation of internal combustion engine valve[J]. Internal Combustion Engine & Powerplant, 2006(3): 54-56. 赵新. 内燃机气门的失效原因探析[J]. 内燃机与动力装置, 2006(3): 54-56. [2] QUAN Guozheng, PAN Jia. New breakthrough and progress of research methods and objectives about large size electric upsetting technology [J]. Journal of Netshape Forming Engineering, 2014, 6(5): 18-24. 权国政, 潘佳. 大规格电镦技术研究方法及研究目标的新突破及进展[J]. 精密成形工程, 2014, 6(5): 18-24. [3] ZHAO Lei. Multi-field coupling numerical simulation and process parameters optimization of electric upsetting [D]. Chongqing: Chongqing University, 2007. 赵磊. 电镦锻成形多场耦合数值模拟及工艺参数优化[D]. 重庆: 重庆大学, 2007. [4] JEONG H, CHO J, LEE N, et al. Simulation of electric upsetting and forging process for large marine diesel engine exhaust valves[J]. Materials Science Forum, 2006, 510-511: 142-145. [5] QUAN Guozheng, ZHANG Le, AN Chao, et al. Multi-variable and bi-objective optimization of electric upsetting process for grain refinement and its uniform distribution[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(6): 859-872. [6] WANG Guoshun, XIA Juchen, HU Guoan, et al. Numerical simulation of electrical upsetting process for valve[J]. Journal of Plasticity Engineering, 2004, 11(1): 57-60. 汪国顺, 夏巨谌, 胡国安, 等. 气门电热镦粗工艺的数值模拟[J]. 塑性工程学报, 2004, 11(1): 57-60. [7] EVANS N, MAZIASZ P, WALKER L. Microstructure and micro-analysis of Ni-based superalloy exhaust valves [J]. Microscopy and Microanalysis, 2004, 10(S02): 654-655. [8] ZOU Zhenyu. Optimization design of processing parameters for electric upsetting process of heat-resistant alloy to attain the homogenized and fine grain[D]. Chongqing: Chongqing University, 2016. 邹震宇. 基于晶粒匀细化双目标的耐热合金电镦工艺参数优化设计[D]. 重庆: 重庆大学, 2016. [9] QUAN Guozheng, PAN Jia, WANG Xuan, et al. Correspondence between grain refinements and flow softening behaviors at Nimonic 80A superalloy under different strain rates, temperatures and strains [J]. Materials Science & Engineering, 2018, A679: 358-371. [10] QUAN Guozheng, ZHANG Yuqing, ZHANG Pu, et al. Correspondence between low-energy twin boundary density and thermal-plastic deformation parameters in nickel-based superalloy[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(2): 438-455. [11] SIVAPRASAD P, VENUGOPAL S, VENUGOPAL S, et al. Validation of processing maps for a 15Cr-15Ni-2.2Mo-0.3Ti austenitic stainless steel using hot forging and rolling tests[J]. Journal of Materials Processing Technology, 2003, 132(1-3): 262-268. [12] QUAN Guozheng, LIU Qiao, ZHAO Jiang, et al. Determination of dynamic recrystallization parameter domains of Ni80A superalloy by enhanced processing maps[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1449-1464. [13] WANG Guangchun, ZHAO Guoqun, ZHAO Xinhai, et al. A study of microstructure optimization methods of forging processes based on deformation uniformity and its applications[J]. Digital Manufacture Science, 2005(2): 1-20. 王广春, 赵国群, 赵新海, 等. 基于变形均匀性的锻造过程微观组织优化方法及其应用[J]. 数字制造科学, 2005(2): 1-20. [14] WANG Guangchun. Shape optimization design of the preform and billet of the forging process based on the microstructure optimization[J]. Journal of Plasticity Engineering, 2007, 14(2): 69-72. 王广春. 基于微观组织优化的锻造工艺预成形及毛坯形状优化设计[J]. 塑性工程学报, 2007, 14(2): 69-72. [15] WANG Guangchun, GUAN Jing, ZHAO Guoqun. Modeling and application of microstructure optimization in forging process[J]. Journal of Plasticity Engineering, 2005, 12(5): 49-53. 王广春, 管婧, 赵国群. 锻造成形微观组织优化建模及应用[J]. 塑性工程学报, 2005, 12(5): 49-53. [16] QUAN Guozheng, YU Yanze, SHENG Xue, et al. An innovative approach of parameter loading path design for grain refinement and its application in Ni80a superalloy[J]. Materials, 2021, 14(21): 6703-6721. [17] ZHANG Le. Finite modeling and applying of low ΣCSL grain boundary proportion based on Ni-based superalloy electric-thermal-mechanical coupling simulation[D]. Chongqing: Chongqing University, 2018. 张乐. 镍基超合金电-热-力耦合变形低ΣCSL晶界密度有限元分析建模及应用[D]. 重庆: 重庆大学, 2018. |