[1] SABISTON T, LI Bin, KANG Jidong, et al. Accounting for the microstructure in the prediction of the fatigue life of injection moulded composites for automotive applications[J]. Composite Structures, 2021, 255:112898. [2] NGUYEN T D, NGUYEN P H, BANH L T. Die steel surface layer quality improvement in titanium μ-powder mixed die sinking electrical discharge machining[J]. International Journal of Advanced Manufacturing Technology, 2019, 100(9-12):2637-2651. [3] ALI A E, YU Sun, CAO Chunping. Deformation and wear in a H21(3Cr2W8V) steel die during hot forging:simulation, mechanical properties, and microstructural evolution[J]. Journal of Materials Research and Technology, 2021, 15:268-277. [4] JIANG Qichuan, ZHAO Xumin, QIU Feng, et al. The relationship between oxidation and thermal fatigue of martensitic hot-work die steels[J]. Acta Metallurgica Sinica(English Letters), 2018, 31(7):692-698. [5] YANG Xudong, LI Chuanwei, ZHANG Ziyang, et al. Effect of cobalt-based coating microstructure on the thermal fatigue performance of AISI H13 hot work die steel[J]. Applied Surface Science, 2020, 521:146360. [6] PAPAGEORGIOU D, MEDREA C, KYRIAKOU N. Failure analysis of H13 working die used in plastic injection moulding[J]. Engineering Failure Analysis, 2013, 35(1):355-359. [7] NAZARI K A, SHABESTARI S G. Effect of micro alloying elements on the interfacial reactions between molten aluminum alloy and tool steel[J]. Journal of Alloys & Compounds, 2009, 478(1-2):523-530. [8] 李绍宏, 何文超, 张旭, 等. H13型热作模具钢表面改性技术研究进展[J]. 钢铁, 2021, 56(3):13-22 LI Shaohong, HE Wenchao, ZHANG Xu, et al. Research progress on surface treatment technologies of H13 hot work die steel[J]. Iron and Steel, 2021, 56(3):13-22. [9] 刘清阳, 王华君, 洪峰, 等. H13钢等离子堆焊Ni60A/Cr3C2覆层的磨损及热疲劳性能[J]. 金属热处理, 2020, 45(10):175-180. LIU Qingyang, WANG Huajun, HONG Feng, et al. Wear and thermal fatigue properties of Ni60A/Cr3C2 coating prepared by PTA welding on H13 steel[J]. Heat Treatment of Metals, 2020, 45(10):175-180. [10] WU Hanyun, YE Yinmiao, LU Haoqi, et al. Tribological behavior of laser thermal sprayed Cr3C2-NiCr +10%Ni/MoS2 composite coating on H13 hot work mould steel[J]. Materials Research Express, 2020, 7(1):016599. [11] KARMAKAR D P, MUVVALA G, NATH A K. High-temperature abrasive wear characteristics of H13 steel modified by laser remelting and cladded with Stellite 6 and Stellite 6/30% WC[J]. Surface and Coatings Technology, 2021, 422:127498. [12] XUE Kaining, LU Haifei, LUO Kaiyu, et al. Effects of Ni25 transitional layer on microstructural evolution and wear property of laser clad composite coating on H13 tool steel[J]. Surface and Coatings Technology, 2021, 422:127498. [13] NGHIA T V, SEN Y, ANH P T. Microstructure and properties of Cu/TiB2 wear resistance composite coating on H13 steel prepared by in-situ laser cladding[J]. Optics & Laser Technology, 2018, 108:480-486. [14] 戴秋莲, 张杰, 尤芳怡. 激光熔覆Cr3C2/Ni基复合涂层的磨削特性[J]. 哈尔滨工业大学学报, 2019, 51(1):122-126. DAI Qiulian, ZHANG Jie, YOU Fangyi. Grinding characteristics of laser cladding Cr3C2/Ni based composite coating[J]. Journal of Harbin Institute of Technology, 2019, 51(1):122-126. [15] ZHANG Peirong, LIU Zhanqiang. Effect of sequential turning and burnishing on the surface integrity of Cr-Ni-based stainless steel formed by laser cladding process[J]. Surface & Coatings Technology, 2015, 276:327-335. [16] ZHAO Yanhua, SUN Jie, LI Jianfeng. Study on chip morphology and milling characteristics of laser cladding layer[J]. International Journal of Advanced Manufacturing Technology, 2015, 77(5-8):783-796. [17] GUAN Bin, Cherrill M, PAI Jinghong, et al. Effect of mould roughness on injection moulded poly (methyl methacrylate) surfaces:Roughness and wettability[J]. Journal of Manufacturing Processes, 2019, 48:313-319. [18] WANG Qinying, BAI Shulin, ZHAO Yunhong, et al. Effect of mechanical polishing on corrosion behavior of Hastelloy C22 coating prepared by high power diode laser cladding[J]. Applied Surface Science, 2014, 303:312-318. [19] HU Bin, TU Xin, LUO Haiwen, et al. Effect of warm rolling process on microstructures and tensile properties of 10 Mn steel[J]. Journal of Materials Science & Technology, 2020, 47(12):131-141. [20] XU Xingchen, LIU Daoxin, LIU Chengsong, et al. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. Journal of Materials Science & Technology, 2020, 40(5):88-98. [21] LIU Junbiao, ZHANG Xuehui, CUI Ziyi, et al. Experimental investigation on ultrasonic surface rolling of Inconel 690TT[J]. Materials and Manufacturing Processes, 2021, 36(10):1208-1217. [22] LIU Chengsong, LIU Daoxin, ZHANG Xiaohua, et al. Improving fatigue performance of Ti-6Al-4V alloy via ultrasonic surface rolling process[J]. Journal of Materials Science & Technology, 2019, 35(8):1555-1562. [23] HIEGEMANN L, WEDDELING C, KHALIFA N B, et al. Prediction of roughness after ball burnishing of thermally coated surfaces[J]. Journal of Materials Processing Technology, 2015, 217:193-201. [24] 陆萍萍. 万米深井钻机刹车盘表面激光熔覆组织与性能研究[D]. 青岛:中国石油大学(华东), 2010. LU Pingping. Study on the microstructures and properties of laser cladding on the surface of brake disc for myriameter deep drilling rig[D]. Qingdao:China University of Petroleum(East China), 2010. [25] PAULI L, HEIKKI R, TAPIO S, et al. Influence of grain size distribution on the Hall-Petch relationship of welded structural steel[J]. Materials Science and Engineering:A. 2014, 592(13):28-39. [26] MENG Ying, DENG Jianxin, ZHANG Yun, et al. Tribological properties of textured surfaces fabricated on AISI 1045 steels by ultrasonic surface rolling under dry reciprocating sliding[J]. Wear, 2020, 460:203488. |