[1] ROBSON N, SOH G S. Geometric design of eight-bar wearable devices based on limb physiological contact task[J]. Mechanism and Machine Theory, 2016, 100:358-367. [2] ZHAO Tieshi, YU Haibo, DAI Jiansheng. An ankle joint rehabilitation robot based on 3-RSS/S parallel mechanism[J]. Journal of Yanshan University, 2005(6):471-475. 赵铁石, 于海波, 戴建生. 一种基于3-RSS/S并联机构的踝关节康复机器人[J]. 燕山大学学报, 2005(6):471-475. [3] TONG K Y, HO S K, PANG P M K, et al. An intention driven hand functions task training robotic system[C]//2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Piscataway:IEEE, 2010:3406-3409. [4] ZHAO Yu. The design and analysis of exoskeleton finger rehabilitation robot[D]. Qinhuangdao:Yanshan University, 2017. 赵瑜. 外骨骼式手指康复机器人的设计和分析[D]. 秦皇岛:燕山大学, 2017. [5] BEIL J, PERNER G, ASFOUR T. Design and control of the lower limb exoskeleton KIT-EXO-1[C]//2015 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE, 2015:119-124. [6] CHEN Weihai, XU Yingjun, WANG Jianhua, et al. Kinematics and workspace analysis of parallel lower limb rehabilitation exoskeleton[J]. Journal of Mechanical Engineering, 2015, 51(13):158-166. 陈伟海, 徐颖俊, 王建华, 等. 并联式下肢康复外骨骼运动学及工作空间分析[J]. 机械工程学报, 2015, 51(13):158-166. [7] BARTENBACH V, WYSS D, SEURET D, et al. A lower limb exoskeleton research platform to investigate human-robot interaction[C]//2015 IEEE International Conference on Rehabilitation Robotics (ICORR). IEEE, 2015:600-605. [8] LI T, CUI R. Design and evolution of variable topology parallel mechanisms[M]. IEEE, 2011. [9] HESS-COELHO T A. Topological synthesis of a parallel wrist mechanism[J]. Journal of Mechanical Design, 2006, 128(1):1. [10] ROBSON N, ALLINGTON J, SOH G S. Development of underactuated mechanical fingers based on anthropometric data and anthropomorphic tasks[J]. Proceedings of the ASME Design Engineering Technical Conference, New York:ASME, 2014, 5B:1-8. [11] MUDGE S. Motor Control:Translating research into clinical practice 4th edition[J]. New Zealand Journal of Physiotherapy, 2012, 40(2):98-99. [12] DING Wenlong. System anatomy[M]. Beijing:People's Medical Publishing House, 2015. 丁文龙. 系统解剖学[M]. 北京:人民卫生出版社, 2015. [13] CAO Weiqing. Analysis and synthesis of linkage mechanism[M]. Beijing:science Press, 2002. 曹惟庆. 连杆机构分析与综合[M]. 北京:科学出版社, 2002. [14] GUO Fei, LI Yongquan, SONG Zhaojing, et al. The application of spinner bond graph in dynamic modeling of parallel mechanism[J]. Journal of Mechanical Engineering, 2015, 51(23):12-20.. 郭菲, 李永泉, 宋肇经, 等. 旋量键合图在并联机构动力学建模中的应用[J]. 机械工程学报, 2015, 51(23):12-20. [15] HUANG Zhen, ZHAO Yongsheng, ZHAO Tieshi. Advanced spatial mechanism[M]. Beijing:Higher Education Press, 2006. 黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 北京:高等教育出版社, 2006. [16] LEWAND R E. Cryptological mathematics[M]. American Mathematical Soc., 2000. [17] SONG Li, FAN Chonghui. Method of structural type optimization for kinematic synthesis of planar linkage with AⅡ joint[J]. Journal of Mechanical Engineering, 2009, 45(3):132-137. 宋黎, 范崇辉. 全铰链平面连杆机构运动综合的结构类型优选方法[J]. 机械工程学报, 2009, 45(3):132-137. [18] HAN Pengpeng. Type synthesis and optimal selection of 1T2R and 2R1T parallel mechanisms based on conformal geometric algebra[D]. Tianjin:Tianjin University, 2017. 韩鹏鹏. 基于共形几何代数的1T2R和2R1T并联机构构型综合与优选[D]. 天津:天津大学, 2017. [19] LI Wenhui, ZOU Huijun, BI Zhuming. An efficient method for identifying freedom types of planar kinematic chains[J]. Journal of Shanghai Jiaotong University (postdoctoral album), 1994(4):115121. 李文辉, 邹慧君, 毕诸明. 识别平面运动链自由度类型的有效方法[J]. 上海交通大学学报(博士后专辑), 1994(4):115-121. [20] JIA Jie. Introduction to hand function rehabilitation[M]. Beijing:Publishing House of Electronics Industry, 2019. 贾杰. 手功能康复概论[M]. 北京:电子工业出版社, 2019. [21] ZHOU Junming. Upper limb hand function rehabilitation[M]. Shanghai:Shanghai World Book Publishing Company, 2019. 周俊明. 上肢手功能康复学[M]. 上海:上海世界图书出版公司, 2019. |