机械工程学报 ›› 2022, Vol. 58 ›› Issue (10): 298-325.doi: 10.3901/JME.2022.10.298
宋学官, 来孝楠, 何西旺, 杨亮亮, 孙伟, 郭东明
收稿日期:
2021-09-28
修回日期:
2022-03-25
出版日期:
2022-05-20
发布日期:
2022-07-07
通讯作者:
宋学官(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为多学科耦合建模与优化设计、工业大数据挖掘及数据驱动的预测技术、装备智能化与数字孪生。E-mail:sxg@dlut.edu.cn
作者简介:
来孝楠,男,1992年出生,博士研究生。主要研究方向为数字孪生系统集成和机器学习。E-mail:laixiaonan0910@163.com;何西旺,男,1996年出生,博士研究生。主要研究方向为基于降阶模型的数字孪生技术。E-mail:wsxw1014@mail.dlut.edu.cn;杨亮亮,男,1994年出生,博士研究生。主要研究方向为面向数字孪生的信号处理。E-mail:liangzai5358@163.com;孙伟,男,1967年出生,博士,教授,博士研究生导师。主要研究方向为多学科协同设计方法、高性能装配、重大装备智能运维、数字孪生技术。E-mail:sunwei@dlut.edu.cn;郭东明,男,1959年出生,教授,博士研究生导师,中国工程院院士。主要研究方向为精密超精密加工与高性能制造。E-mail:guodm@dlut.edu.cn
基金资助:
SONG Xueguan, LAI Xiaonan, HE Xiwang, YANG Liangliang, SUN Wei, GUO Dongming
Received:
2021-09-28
Revised:
2022-03-25
Online:
2022-05-20
Published:
2022-07-07
摘要: 重大装备形态和性能的精准预测与分析是实现其智能化和自主创新的关键技术之一。数字孪生作为连接物理世界和数字世界的纽带,可用于在数字世界中建立物理实体材料选择、结构设计、加工制造和运维管理的全生命周期真实镜像。面向重大装备几何形态和结构力学性能,通过分析当前建立数字孪生的需求与难点,提出机理模型与实测数据联合驱动的"算测融合"解决方案;综合考虑孪生模型的时效性与准确性要求,构建重大装备"形性一体化"的数字孪生框架。详细论述当前构建重大装备数字孪生所面临的"算不了"、"算不准"、"算不快"、"测不了"、"测不全"和"测不准"六个具体问题,并给出相关解决方案和关键技术。通过典型案例验证了所提框架与关键技术的可行性与有效性,为数字孪生在重大装备中的落地应用提供了理论和技术参考。最后,探讨了重大装备数字孪生的未来发展趋势和所面临的进一步挑战。
中图分类号:
宋学官, 来孝楠, 何西旺, 杨亮亮, 孙伟, 郭东明. 重大装备形性一体化数字孪生关键技术[J]. 机械工程学报, 2022, 58(10): 298-325.
SONG Xueguan, LAI Xiaonan, HE Xiwang, YANG Liangliang, SUN Wei, GUO Dongming. Key Technologies of Shape-performance Integrated Digital Twin for Major Equipment[J]. Journal of Mechanical Engineering, 2022, 58(10): 298-325.
[1] 国务院关于积极推进"互联网+"行动的指导意见[EB/OL].[2015-07-04]. http://www.gov.cn/zhengce/content/2015-07/04/content_10002.htm. The State Council's Guiding Opinions on actively romoting the "Internet+" action[EB/OL].[2015-07-04]. http://www.gov.cn/zhengce/content/2015-07/04/content_10002.htm. [2] ZHOU J,LI P,ZHOU Y,et al. Toward new-generation intelligent manufacturing[J]. Engineering,2018,4(1):11-20. [3] 加快推动高新技术与实体经济融合发展[EB/OL].[2022-03-22]. http://www.cac.gov.cn/2018-05/26/c_1122891406.htm. Accelerate the integrated development of high-tech and real economy[EB/OL].[2022-03-22]. http://www.cac.gov.cn/2018-05/26/c_1122891406.htm. [4] 王世伟.大数据战略是新时代建设网络强国的着力点[EB/OL].[2022-03-22]. http://theory.people.com.cn/n1/2018/0423/c40531-29943956.html. WANG Shiwei. Big data strategy is the focus of building a network power in the new era[EB/OL].[2022-03-22]. http://theory.people.com.cn/n1/2018/0423/c40531-29943956.html. [5] WANG B,TAO F,FANG X,et al. Smart manufacturing and intelligent manufacturing:A comparative review[J]. Engineering,2021,7(6):738-757. [6] 苏秦,王洁,刘丹.技术创新和产业组织对重大装备产品质量竞争力的影响[J].科技与经济,2016,30(2):1-4. SU Qin,WANG Jie,LIU Dan. Effect of technology innovation and industrial organization on quality competitiveness of major equipment product[J]. Soft Science,2016,30(2):1-4. [7] 塔式起重机坍塌事故[EB/OL].[2020-03-22]. https://baijiahao.baidu.com/s?id=1684751234472539888&wfr=spider&for=pc. Collapse accident of tower crane[EB/OL].[2022-03-22]. https://baijiahao.baidu.com/s?id=1684751234472539888&wfr=spider&for=pc. [8] CRANES B. Crane Accident[EB/OL].[2022-03-22]. https://in.pinterest.com/bshcranes/crane-accident/. [9] New heavy-lift floating crane collapsed in Rostock VIDEO[EB/OL].[2022-03-22]. https://www.fleetmon.com/maritime-news/2020/29565/new-heavy-lift-floating-crane-collapse/. [10] 王同建,杨书伟,谭晓丹,等.基于DEM-MBD联合仿真的液压挖掘机作业性能分析[J].吉林大学学报,2022,52(4):811-818. WANG Tongjian,YANG Shuwei,TAN Xiaodan,et al. Performance analysis of hydraulic excavator based on DEM-MBD co-simulation[J]. Journal of Jilin University,2022,52(4):811-818. [11] SUH K,YOON H. Lifting capability and stress analyses of the crane system for a large-sized tactical wrecker[J]. International Journal of Automotive Technology,2018,19(5):853-858. [12] 彭宇,刘大同,彭喜元.故障预测与健康管理技术综述[J].电子测量与仪器学报,2010,24(1):1-9. PENG Yu,LIU Datong,PENG Xiyuan. A review:Prognostics and health management[J]. Journal of Electronic Measurement and Instrument,2010,24(1):1-9. [13] 李浩,陶飞,王昊琪,等.基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J].计算机集成制造系统,2019,25(6):1320-1336. LI Hao,TAO Fei,WANG Haoqi,et al. Integration framework and key tech nologies of complex product design-manufacturing based on digital twin[J]. Computer Integrated Manufacturing Systems,2019,25(6):1320-1336. [14] 刘大同,郭凯,王本宽,等.数字孪生技术综述与展望[J].仪器仪表学报,2018,39(11):1-10. LIU Datong,GUO Kai,WANG Benkuan,et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument,2018,39(11):1-10. [15] 张少敏,毛冬,王保义.大数据处理技术在风电机组齿轮箱故障诊断与预警中的应用[J].电力系统自动化,2016,40(14):129-134. ZHANG Shaomin,MAO Dong,WANG Baoyi. Application of big data processing technology in fault disgnosis and early warning of wind turbine gearbox[J]. Automation of Electric Power Systems,2016,40(14):129-134. [16] 汤宝平,黄庆卿,邓蕾,等.机械设备状态监测无线传感器网络研究进展[J].振动、测试与诊断,2014,34(1):1-7. TANG Baoping,HUANG Qingqing,DENG Lei,et al. Research progress of wireless sensor networks for condition monitoring of mechanical equipment[J]. Journal of Vibration,Measurement&Diagnosis,2014,34(1):1-7. [17] 周玉清,梅雪松,姜歌东,等.基于内置传感器的大型数控机床状态监测技术[J].机械工程学报,2009,45(4):125-130. ZHOU Yuqing,MEI Xuesong,JIANG Gedong,et al. Technology on large scale numerical control machine tool condition monitoring based on built-in sensors[J] Journal of Mechanical Engineering,2009,45(4):125-130. [18] 赵申坤,姜潮,龙湘云.一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J].机械工程学报,2018,54(12):115-124. ZHAO Shenkun,JIANG Chao,LONG Xiangyun. Remaining useful life estimation of mechanical systems based on the data-driven method and Bayesian theory[J]. Journal of Mechancial Engineering,2018,54(12):115-124. [19] ROSEN R,VON WICHERT G,LO G,et al. About the importance of autonomy and digital twins for the future of manufacturing[J]. IFAC-PapersOnLine,2015,28(3):567-572. [20] GRIEVES M. Digital twin:Manufacturing excellence through virtual factory replication[J]. White Paper,2014(1):1-7. [21] GRIEVES M W. Product lifecycle management:The new paradigm for enterprises[J]. International Journal of Product Development,2005,2(1-2):71-84. [22] GRIEVES M. Product lifecycle management:Driving the next generation of lean thinking[M]. New York:McGraw-Hill,2006. [23] GRIEVES M. Virtually perfect:Driving innovative and lean products through product lifecycle management[M]. Cocoa Beach,FL:Space Coast Press,2011. [24] SHAFTO M,CONROY M,DOYLE R,et al. DRAFT modeling,simulation,information technology&processing roadmap:Technology area 11[R]. Washington D. C.:NASA,2010. [25] SHAFTO M,CONROY M,DOYLE R,et al. Modeling,simulation,information technology&processing roadmap:Technology area 11[R]. New York,USA:NASA,2010. [26] PIASCIK B,VICKERS J,LOWRY D,et al. Materials,structures,mechanical systems,and manufacturing roadmap:Technology area 12[R]. New York,USA:NASA,2010. [27] NASA technology roadmaps,TA 6:Human health,life support,and habitation systems[EB/OL].[2020-03-22]. https://www.nasa.gov/offices/oct/home/roadmaps/index.html. [28] 2020 NASA technology taxonomy[EB/OL].[2020-03-22]. https://www.nasa.gov/offices/oct/taxonomy/index.html. [29] TUEGEL E J,INGRAFFEA A R,EASON T G,et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering,2011,2011:1-14. [30] TUEGEL E J. The airframe digital twin:Some challenges to realization[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference. Honolulu,Hawaii,USA,2012:1-8. [31] GLAESSGEN E H,STARGEL D S. The digital twin paradigm for future NASA and U.S. Air force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA. Honolulu,HI,2012:1-14. [32] ZAKRAJSEK A J,MALL S. The development and use of a digital twin model for tire touchdown health monitoring[C]//58th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,2017. Grapevine,USA,2017:1-16. [33] HEO E,YOO N. Numerical control machine optimization technologies through analysis of machining history data using digital twin[J]. Applied Sciences,2021,11(7):3259. [34] LU Y,LIU C,WANG K I K,et al. Digital twin-driven smart manufacturing:Connotation,reference model,applications and research issues[J]. Robotics and Computer-Integrated Manufacturing,2020,61:101837. [35] LI C,MAHADEVAN S,LING Y,et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal,2017,55(3):930-941. [36] ZHIDCHENKO V,MALYSHEVA I,HANDROOS H,et al. Faster than real-time simulation of mobile crane dynamics using digital twin concept[J]. Journal of Physics:Conference Series,2018(1):1096. [37] WANG J,YE L,GAO R X,et al. Digital twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research,2019,57(12):3920-3934. [38] GONZALEZ M,SALGADO O,CROES J,et al. A Digital twin for operational evaluation of vertical transportation systems[J]. IEEE Access,2020,8:114389-114400. [39] HAAG S,ANDERL R. Digital twin-Proof of concept[J]. Manufacturing Letters,2018,15:64-66. [40] RENGANATHAN S A,HARADA K,MAVRIS D N. Aerodynamic data fusion toward the digital twin paradigm[J]. AIAA Journal,2020,58(9):3902-3918. [41] MAGARGLE R,JOHNSON L,MANDLOI P,et al. A Simulation-Based Digital twin for model-driven health monitoring and predictive maintenance of an automotive braking system[C]//Proceedings of the 12th International Modelica Conference. Prague,Czech Republic,2017,132:35-46. [42] FOTLAND G,HASKINS C,RØLVÅG T. Trade study to select best alternative for cable and pulley simulation for cranes on offshore vessels[J]. Systems Engineering,2020,23(2):177-188. [43] MOI T,CIBICIK A,RØLVÅG T. Digital twin based condition monitoring of a knuckle boom crane:An experimental study[J]. Engineering Failure Analysis,2020,112:1-10. [44] GUIVARCH D,MERMOZ E,MARINO Y,et al. Creation of helicopter dynamic systems digital twin using multibody simulations[J]. CIRP Annals,2019,68(1):133-136. [45] FARAH S O,GUESSASMA M,BELLENGER E. Digital twin by DEM for ball bearing operating under EHD conditions[J]. Mechanics and Industry,2020,21(5). [46] KAPTEYN M G,KNEZEVIC D J,HUYNH D B P,et al. Data-driven physics-based digital twins via a library of component-based reduced-order models[J]. International Journal for Numerical Methods in Engineering,2020:1-18. [47] GANGULI R,ADHIKARI S. The digital twin of discrete dynamic systems:Initial approaches and future challenges[J]. Applied Mathematical Modelling,2020,77:1110-1128. [48] CHAKRABORTY S,ADHIKARI S,GANGULI R. The role of surrogate models in the development of digital twins of dynamic systems[J]. Applied Mathematical Modelling,2021,90:662-681. [49] CHAKRABORTY S,ADHIKARI S. Machine learning based digital twin for dynamical systems with multiple time-scales[J]. Computers and Structures,2021,243:1-15. [50] 陶飞,程颖,程江峰,等.数字孪生车间信息物理融合理论与技术[J].计算机集成制造系统,2017,23(8):1603-1611. TAO Fei,CHENG Yin,CHENG Jiangfeng,et al. Theories and technologies for cyber-physical fusion in digital twin shop-floor[J]. Computer Integrated Manufacturing Systems,2017,23(8):1603-1611. [51] 陶飞,刘蔚然,张萌,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统,2019,25(1):1-18. TAO Fei,LIU Weiran,ZHANG Meng,et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems,2019,25(1):1-18. [52] TAO F,QI Q. Make more digital twins[J]. Nature,2019,573(7775):490-491. [53] ZHANG Y,QIAN C,LÜ J,et al. Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor[J]. IEEE Transactions on Industrial Informatics,2017,13(2):737-747. [54] ZHANG H,LIU Q,CHEN X,et al. A digital twin-based approach for designing and multi-objective optimization of hollow glass production line[J]. IEEE Access,2017,5:26901-26911. [55] 庄存波,刘检华,熊辉,等.产品数字孪生体的内涵、体系结构及其发展趋势[J].计算机集成制造系统,2017,23(4):753-768. ZHUANG Cunbo,LIU Jianhua,XIONG Hui,et al. Connotation,architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems,2017,23(4):753-768. [56] ZHENG Y,YANG S,CHENG H. An application framework of digital twin and its case study[J]. Journal of Ambient Intelligence and Humanized Computing,2019,10(3):1141-1153. [57] 董雷霆,周轩,赵福斌.飞机结构数字孪生关键建模仿真技术[J].航空学报,2021,42(3):023981. DONG Leiting,ZHOU Xuan,ZHAO Fubin,et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3):023981. [58] LIU S M,LU Y Q,LI J,et al. Multi-scale evolution mechanism and knowledge construction of a digital twin mimic mode[J]. Robotics and Computer-Integrated Manufacturing,2021,71:1-17. [59] 郭飞燕,刘检华,邹方,等.数字孪生驱动的装配工艺设计现状及关键实现技术研究[J].机械工程学报,2019,55(17):110-132. GUO Feiyan,LIU Jianhua,ZOU Fang,et al. Research on the state-of-art,connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering. 2019,55(17):110-132. [60] 谢嘉成,王学文,杨兆建.基于数字孪生的综采工作面生产系统设计与运行模式[J].计算机集成制造系统,2019,25(6):1381-1391. XIE Jiacheng,WANG Xuewen,YANG Zhaojian. Design and operation mode of production system of fully mechanized coal mining face based on digital twin theory[J]. Computer Integrated Manufacturing Systems,2019,25(6):1381-1391. [61] XU Y,SUN Y,LIU X,et al. A digital-twin-assisted fault diagnosis using deep transfer learning[J]. IEEE Access,2019,7:19990-19999. [62] LIU Z,BAI W,DU X,et al. Digital twin-based safety evaluation of prestressed steel structure[J]. Advances in Civil Engineering,2020,2020. [63] LIU Z,SHI G,ZHANG A,et al. Intelligent tensioning method for prestressed cables based on digital twins and artificial intelligence[J]. Sensors,2020,20(24):1-20. [64] LIU Z,SHI G,JIANG A,et al. Intelligent discrimination method based on digital twins for analyzing sensitivity of mechanical parameters of prestressed cables[J]. Applied Sciences,2021,11(4):1-17. [65] LAI X,WANG S,GUO Z,et al. Designing a shape-performance integrated digital twin based on multiple models and dynamic data:A boom crane example[J]. Journal of Mechanical Design,2021,143(7):1-14. [66] WANG S,LAI X,HE X,et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design,2022,144(3):1-12. [67] LAI X,HE X,WANG S,et al. Building a lightweight digital twin of a crane boom for structural safety monitoring based on a multifidelity surrogate model[J]. Journal of Mechanical Design,2022,144(6):1-7. [68] HE X,QIU Y,LAI X,et al. Towards a shape-performance integrated digital twin for lumbar spine analysis[J]. Digital Twin,2021:1-16. [69] HU W,HE Y,LIU Z,et al. Toward a digital twin:time series prediction based on a hybrid ensemble empirical mode decomposition and BO-LSTM neural networks[J]. Journal of Mechanical Design,2021,143(5):1-21. [70] 肖文磊,曹宪,赵罡.面向数控加工的数字孪生系统[J].航空制造技术,2020,63(23-24):46-55. XIAO Wenlei,CAO Xian,ZHAO Gang. Digital twin system for CNC machining[J]. Aeronautical Manufacturing Technology,2020,63(23-24):46-55. [71] 张清东,周岁,张晓峰,等.薄带钢拉矫机浪形矫平过程机理建模及有限元验证[J].机械工程学报,2015,51(2):49-57. ZHANG Qingdong,ZHOU Sui,ZHANG Xiaofeng,et al. Analytic modeling and corroborating by FEM of tension leveling process of thin buckled stell strip[J]. Journal of Mechanical Engineering,2015,51(2):49-57. [72] ZHENG F J,ZONG C Y,DEMPSTER W,et al. A multidimensional and multiscale model for pressure analysis in a reservoir-pipe-valve system[J]. Journal of Pressure Vessel Technology,Transactions of the ASME,2019,141(5):1-14. [73] SHI M,LV L,SUN W,et al. A multi-fidelity surrogate model based on support vector regression[J]. Structural and Multidisciplinary Optimization,2020,61(6):2363-2375. [74] 韩旭.基于数值模拟的设计理论与方法[M].北京:科学出版社,2015. HAN Xu. Numerical simulation-based design:Theory and methods[M]. Beijing:Science Press,2015. [75] WANG G G,SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design,2007,129(4):370-380. [76] ANTOULAS A C. Approximation of large-scale dynamical systems:An overview[J]. IFAC Proceedings Volumes (IFAC-PapersOnline),2004,37(11):19-28. [77] QU Z Q. Model order reduction techniques[M]. London:Springer-Verlag London Ltd,2004. [78] GUYAN R J. Reduction of stiffness and mass matrices[J]. AIAA Journal,1965,3(2):380. [79] PAZ M. Dynamic condensation[J]. AIAA Journal,1984,22(5):724-727. [80] GRIMME E J. Krylov projection methods for model reduction[D]. Urbana-Champaign:University of Illinois at Urbana-Champaign,1997. [81] WILSON E L,YUAN M-W,DICKENS J M. Dynamic analysis by direct superposition of Ritz vectors[J]. Earthquake Engineering&Structural Dynamics,1982,10(6):813-821. [82] ROWLEY C W,COLONIUS T,MURRAY R M. Model reduction for compressible flows using POD and Galerkin projection[J]. Physica D:Nonlinear Phenomena,2004,189(1-2):115-129. [83] H.MACNEAL R. A hybrid method of component mode synthesis[J]. 1971,1:581-601. [84] HAN Z H,ZIMMERMANN,GÖRTZ S. Alternative cokriging model for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(5):1205-1210. [85] HAN Z H,ZHANG Y,SONG C X,et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal,2017,55(12):4330-4346. [86] LI K,LIU Y,WANG S,et al. Multifidelity data fusion based on gradient-enhanced surrogate modeling method[J]. Journal of Mechanical Design,2021,143(12):1-24. [87] WANG S,LIU Y,ZHOU Q,et al. A multi-fidelity surrogate model based on moving least squares:Fusing different-fidelity data for engineering design[J]. Structural and Multidisciplinary Optimization,2021,64(6):3637-3652. [88] SONG X,LÜ L,SUN W,et al. A radial basis function-based multi-fidelity surrogate model:Exploring correlation between high-fidelity and low-fidelity models[J]. Structural and Multidisciplinary Optimization,2019,60(3):965-981. [89] CAI X,QIU H,GAO L,et al. Adaptive radial-basis-function-based multifidelity metamodeling for expensive black-box problems[J]. AIAA Journal,2017,55(7):2424-2436. [90] 周奇,杨扬,宋学官,等.变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J].机械工程学报,2020,56(24):219-243. ZHOU Qi,YANG Yang,SONG Xueguan,et al. Survey of multi-fidelity surrogate models and their applications in the design and optimization of engineering equipment[J]. Journal of Mechanical Engineering,2020,56(24):219-243. [91] 刘杰.动态载荷识别的计算反求技术研究[D].长沙:湖南大学,2011. LIU Jie. Research on computational inverse techniques in dynamic load identification[D]. Changsha:Hunan University,2011. [92] ZHANG Y,WANG S,ZHOU C,et al. A fast active learning method in design of experiments:Multipeak parallel adaptive infilling strategy based on expected improvement[J]. Structural and Multidisciplinary Optimization,2021:1259-1284. [93] LIU Y,LI K,WANG S,et al. A sequential sampling generation method for multi-fidelity model based on voronoi region and sample density[J]. Journal of Mechanical Design,2021,143(12):1-17. [94] 张德文,[美]魏阜旋.模型修正与破损诊断[M].北京:科学出版社,1999. ZHANG Dewen,WEI Fuxuan. Model updating and damage detection[M]. Beijing:Science Press,1999. [95] KAMMER D C. Effects of noise on sensor placement for on-orbit modal identification of large space structures[J]. Journal of Dynamic Systems,Measurement,and Control,1992,114(3):436-443. [96] MORADIPOUR P,CHAN T H T,GALLAGE C. An improved modal strain energy method for structural damage detection,2D simulation[J]. Structural Engineering and Mechanics,2015,54(1):105-119. [97] PASTOR M,BINDA M,HARČARIK T. Modal assurance criterion[J]. Procedia Engineering,2012,48:543-548. [98] 黄民水,朱宏平,宋金强.传感器优化布置在桥梁结构模态参数测试中的应用[J].公路交通科技,2008,25(2):86-100. HUANG Minshui,ZHU Hongping,SONG Jinqiang. Application of optimal sensor placement in modal parameters test of bridge structure[J]. Journal of Highway and Transportation Research and Development,2008,25(2):86-100. [99] CHEHRI A,FORTIER P,TARDIF P. Geo-location with wireless sensor networks using non-linear[J]. Journal of Computer Science,2008,8(1):145-154. [100] TONG K H,BAKHARY N,KUEH A B H,et al. Optimal sensor placement for mode shapes using improved simulated annealing[J]. Smart Structures and Systems,2014,13(3):389-406. [101] JHA S K,EYONG E M. An energy optimization in wireless sensor networks by using genetic algorithm[J]. Telecommunication Systems,2018,67(1):113-121. [102] RASMUSSEN M H,STOLPE M. Global optimization of discrete truss topology design problems using a parallel cut-and-branch method[J]. Computers and Structures,2008,86(13-14):1527-1538. [103] PAPADIMITRIOU C. Optimal sensor placement methodology for parametric identification of structural systems[J]. Journal of Sound and Vibration,2004,278(4-5):923-947. [104] GOMES G F,DE ALMEIDA F A,DA SILVA LOPES ALEXANDRINO P,et al. A multiobjective sensor placement optimization for SHM systems considering Fisher information matrix and mode shape interpolation[J]. Engineering with Computers,2019,35(2):519-535. [105] SUN W,SHI M,ZHANG C,et al. Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data[J]. Automation in Construction,2018,92:23-34. [106] SONG X,SHI M,WU J,et al. A new fuzzy C-means clustering-based time series segmentation approach and its application on tunnel boring machine analysis[J]. Mechanical Systems and Signal Processing,2019,133:106279. [107] 石茂林,孙伟,宋学官.隧道掘进机大数据研究进展:数据挖掘助推隧道挖掘[J].机械工程学报,2021,57(22):344-358. SHI Maolin,SUN Wei,SONG Xueguan. Research progress on big data of tunnel boring machine:How data mining can help tunnel boring[J]. Journal of Mechanical Engineering,2021,57(22):344-358. [108] RODRIGUEZ E,CARLOS ECHEVERRÍA J,ALVAREZ-RAMIREZ J. Detrending fluctuation analysis based on high-pass filtering[J]. Physica A:Statistical Mechanics and its Applications,2007,375(2):699-708. [109] FEDOTOV A A. Baseline drift filtering for an arterial pulse signal[J]. Measurement Techniques,2014,57(1):91-96. [110] CHRISTIANO L J,FITZGERALD T J. The band pass filter[J]. International Economic Review,2003,44(2):435-465. [111] ALSALAH A,HOLLOWAY D,MOUSAVI M,et al. Identification of wave impacts and separation of responses using EMD[J]. Mechanical Systems and Signal Processing,2021,151:107385. [112] HUACHUN W,JIAN Z,CHUNHU X,et al. Two-dimensional time series sample entropy algorithm:Applications to rotor axis orbit feature identification[J]. Mechanical Systems and Signal Processing,2021,147:107123. [113] LEI Y,LIN J,HE Z,et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2013,35(1-2):108-126. [114] DU L,SONG Q,JIA X. Detecting concept drift:An information entropy based method using an adaptive sliding window[J]. Intelligent Data Analysis,2014,18(3):337-364. [115] 动臂起重机形性一体化数字孪生[EB/OL].[2022-03-22]. https://www.bilibili.com/video/BV15L41147d1?spm_id_from=333.999.0.0. The shape-performance integrated digital twin of a boom crane[EB/OL].[2022-03-22] https://www.bilibili.com/video/BV15L41147d1?spm_id_from=333.999.0.0. [116] A shape-performance integrated digital twin of a boom crane and its trajectory monitoring[EB/OL].[2022-03-22]. https://youtu.be/HvJaDJoGRqI. |
[1] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
[2] | 王跃飞, 王超, 许于涛, 孙睿, 肖锴, 王凯林. 边-云协同下智能制造单元作业的数字孪生任务调度方法[J]. 机械工程学报, 2024, 60(6): 137-152. |
[3] | 姜文涛, 刘晓明, 李培源, 陈海, 张煦松. 机械式真空快速切换开关机构多目标优化设计[J]. 机械工程学报, 2024, 60(6): 153-162. |
[4] | 刘达新, 王科, 刘振宇, 许嘉通, 谭建荣. 基于数据融合与知识推理的机器人装配单元数字孪生建模方法研究[J]. 机械工程学报, 2024, 60(5): 36-50. |
[5] | 石健, 刘冬, 王少萍. 基于数字孪生的机电液系统PHM关键技术综述[J]. 机械工程学报, 2024, 60(4): 66-81. |
[6] | 杨亮亮, 来孝楠, 何西旺, 李鹏, 郭正刚, 宋学官. 面向飞机机翼数字孪生的在线加速度积分方法[J]. 机械工程学报, 2024, 60(2): 342-355. |
[7] | 陈健, 孟义兴, 袁慎芳, 徐秋慧, 王卉. 融合导波监测的搭接结构裂纹扩展寿命孪生预测[J]. 机械工程学报, 2024, 60(16): 34-42. |
[8] | 刘岳开, 王天杨, 褚福磊. 基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究[J]. 机械工程学报, 2024, 60(12): 107-115. |
[9] | 叶文昌, 郭必成, 邓朝晖, 王伟, 邹伶俐, 刘超, 尹刚刚, 姜峰. 刀具智能化关键技术的研究进展及发展趋势[J]. 机械工程学报, 2023, 59(23): 265-282. |
[10] | 侯正航, 何卫平, 王淑侠, 胡余彭, 肖一帆. 基于数字孪生的弧齿型导引头伺服机构动态装调技术研究[J]. 机械工程学报, 2023, 59(22): 433-443. |
[11] | 李宏坤, 魏代同, 陈玉刚, 许书本. 数字孪生驱动的旋转叶盘振动状态全景感知方法[J]. 机械工程学报, 2023, 59(21): 270-282. |
[12] | 谭建荣, 高铭宇, 徐敬华, 王林轩, 贾晨, 张树有, 王康. 数智化正向设计方法及其在制造装备与过程中的应用[J]. 机械工程学报, 2023, 59(19): 111-125. |
[13] | 周祖德, 姚碧涛. 数字制造的科学体系与技术架构[J]. 机械工程学报, 2023, 59(19): 126-151. |
[14] | 丁明娜, 刘献礼, 岳彩旭, 范梦超, 顾浩. 面向智能制造过程的刀具设计、制备与管控技术[J]. 机械工程学报, 2023, 59(19): 429-459. |
[15] | 陶飞, 张辰源, 刘蔚然, 张贺, 马昕, 高鹏飞, 张建康. 数字工程及十个领域应用展望[J]. 机械工程学报, 2023, 59(13): 193-215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||