[1] ALGUREN B, LUNDGREN-N, SUNNERHAGEN K S. Functioning of stroke survivors-A validation of the ICF core set for stroke in Sweden [J]. Disability and Rehabilitation, 2010, 32(7): 551-559. [2] JRRGENSEN H S, NAKAYAMA H, RAASCHOU H O, et al. Recovery of walking function in stroke patients: The copenhagen stroke study[J]. Archives of Physical Medicine and Rehabilitation, 1995, 76(1): 27-32. [3] SHI Bin, CHEN Xiaofeng, YUE Zan, et al. Wearable ankle robots in post-stroke rehabilitation of gait: A systematic review[J]. Frontiers in Neurorobotics, 2019, 13(63): 1-16. [4] ZHOU Zude, MENG Wei, AI Qingsong, et al. Practical velocity tracking control of a parallel robot based on fuzzy adaptive algorithm[J]. Advances in Mechanical Engineering, 2013, 5(574896): 1-11. [5] LI Jianfeng, ZHANG Kai, ZHANG Leiyu, et al. Design and kinematic performance evaluation of parallel ankle rehabilitation robot[J]. Journal of Mechanical Engineering, 2019, 55(9): 29-39. 李剑锋, 张凯, 张雷雨, 等. 并联踝康复机器人的设计与运动性能评价[J]. 机械工程学报, 2019, 55(9): 29-39. [6] YAO Ligang, LIAO Zhiwei, LU Zongxing, et al. Nutation motion based trajectory planning for a novel hybrid ankle rehabilitation device[J]. Journal of Mechanical Engineering, 2018, 54(21): 33-40. 姚立纲, 廖志炜, 卢宗兴, 等. 踝关节章动式康复运动轨迹规划[J]. 机械工程学报, 2018, 54(21): 33-40. [7] FORRESTER L W, ROY A, HAFER-MACKO C, et al. Task-specific ankle robotics gait training after stroke: A randomized pilot study[J]. Journal of Neuro Engineering and Rehabilitation, 2016, 13(1): 1-6. [8] WARD J, SUGAR T, BOEHLER A, et al. Stroke survivors' gait adaptations to a powered ankle foot orthosis[J]. Advanced Robotics, 2011, 25(15): 1879-901. [9] SHORTER K A, KOGLER G F, LOTH E, et al. A portable powered ankle-foot orthosis for rehabilitation[J]. Journal of Rehabilitation Research & Development, 2011, 48(4): 459-72. [10] CHEN Qiao, ZI Bin, SUN Zhi, et al. Design, analysis and experimental study of a cable-driven parallel waist rehabilitation robot[J]. Journal of Mechanical Engineering, 2018, 54(13): 140-148. 陈桥, 訾斌, 孙智, 等. 柔索驱动并联腰部康复机器人设计, 分析与试验研究[J]. 机械工程学报, 2018, 54(13): 140-148. [11] AWAD L N, BAE J, O'DONNELL K, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science Translational Medicine, 2017, 9(400): 1-12. [12] KWON J, PARK J H, KU S, et al. A soft wearable robotic ankle-foot-orthosis for post-stroke patients[J]. IEEE Robotics & Automation Letters, 2019, 4(3): 2547-2552. [13] BAE J, SIVIY C, ROULEAU M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane, QLD: IEEE, 2018: 2820-2827. [14] KIM J, LEE G, HEIMGARTNER R. Reducing the metabolic rate of walking and running with a versatile, portable exosuit[J]. Science, 2019, 365(6454): 668-672. [15] KHALID Y M, GOUWANDA D, PARASURAMAN S. A review on the mechanical design elements of ankle rehabilitation robot[J]. Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 2015, 229(6): 452-463. [16] BAE J, DE ROSSI S M M, O'DONNELL K, et al. A soft exosuit for patients with stroke: Feasibility study with a mobile off-board actuation unit[C]// 2015 IEEE International Conference on Rehabilitation Robotics (ICORR). Singapore: IEEE, 2015: 131-138. [17] AGOSTINI V, BALESTRA G, KNAFLITZ M. Segm-entation and classification of gait cycles[J]. IEEE Transactions on Neural Systems And Rehabilitation Engineering, 2014, 22(5): 946-952. [18] ASBECK A T, ROSSI S M M D, HOLT K G, et al. A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research, 2015, 34(6): 744-762. [19] WANG Tianmiao, PEI Xuan, HOU Taogang, et al. An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 723-739. |