[1] 屈挺,张凯,罗浩,等. 物联网驱动的"生产-物流"动态联动机制、系统及案例[J]. 机械工程学报,2015,51(20):36-44. QU Ting,ZHANG Kai,LUO Hao,et al. Internet-of- things based dynamic synchronization of production and logistics:Mechanism,system and case study[J]. Journal of Mechanical Engineering,2015,51(20):36-44. [2] 黄少华,郭宇,查珊珊,等. 离散车间制造物联网及其关键技术研究与应用综述[J]. 计算机集成制造系统,2019,25(2):284-302. HUANG Shaohua,GUO Yu,ZHA Shanshan,et al. Review on Internet-of-manufacturing-things and key technologies for discrete workshop[J]. Computer Integrated Manufacturing Systems,2019,25(2):284-302. [3] 张洁,高亮,秦威,等. 大数据驱动的智能车间运行分析与决策方法体系[J]. 计算机集成制造系统,2016,22(5):1220-1228. ZHANG Jie,GAO Liang,QIN Wei,et al. Big-data-driven operational analysis and decision-making methodology in intelligent workshop[J]. Computer Integrated Manufacturing Systems,2016,22(5):1220-1228. [4] KUSIAK A. Smart manufacturing must embrace big data[J]. Nature,2017,544(7648):23-25. [5] ROSSIT D,TOHMÉ F,FRUTOS M. A data-driven scheduling approach to smart manufacturing[J]. Journal of Industrial Information Integration,2019,15:69-79. [6] TAO F,QI Q,LIU A,et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems,2018(48):157-169. [7] 任杉,张映锋,黄彬彬. 生命周期大数据驱动的复杂产品智能制造服务新模式研究[J]. 机械工程学报,2018,54(22):194-203. REN Shan,ZHANG Yingfeng,HUANG Binbin. New pattern of lifecycle big-data-driven smart manufacturing service for complex product[J]. Journal of Mechanical Engineering,2018,54(22):194-203. [8] ZHANG Y,REN S,LIU Y,et al. A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products[J]. Journal of Cleaner Production,2017,142:626-641. [9] MORARIU C,MORARIU O,RILEANU S,et al. Machine learning for predictive scheduling and resource allocation in large scale manufacturing systems[J]. Computers in Industry,2020,120:103244. [10] 汤洪涛,费永辉,陈青丰,等. 基于工业大数据的柔性作业车间动态调度[J]. 计算机集成制造系统,2020,26(9):2497-2510. TANG Hongtao,FEI Yonghui,CHEN Qingfeng,et al. Flexible job shop dynamic scheduling based on industrial big data[J]. Computer Integrated Manufacturing System,2020,26(9):2497-2510. [11] ZHONG R Y,HUANG G Q,LAN S,et al. A big data approach for logistics trajectory discovery from RFID-enabled production data[J]. International Journal of Production Economics,2015,165:260-272. [12] FANG W G,GUO Y,LIAO W H,et al. The spatio-temporal modeling and integration of manufacturing big data in job shop:An ontology -based approach[C/CD]//2020 IEEE International Conference on Industrial Engineering and Applications (ICIEA),Bangkok,2020. [13] LIU X,QI H,LI K,et al. Sampling bloom filter-based detection of unknown RFID tags[J]. IEEE Transactions on Communications,2015,63(4):1432-1442. [14] WANG J L,ZHANG J. Big data analytics for forecasting cycle time in semiconductor wafer fabrication system[J]. International Journal of Production Research,2016,54(23):7231-7244. [15] WANG C,JIANG P Y. Deep neural networks based order completion time prediction by using real-time job shop RFID data[J]. Journal of Intelligent Manufacturing,2019,30(3):1303-1318. [16] 刘道元,郭宇,黄少华,等. 一种面向订单剩余完工时间预测的SOM-FWFCM特征选择算法[J]. 中国机械工程,2021(9):1073-1079. LIU Daoyuan,GUO Yu,HUANG Shaohua,et al. A SOM-FWFCM based feature selection algorithm for order remaining completion time prediction[J]. China Mechanical Engineering,2021(9):1073-1079. [17] 汪俊亮,张洁. 大数据驱动的晶圆工期预测关键参数识别方法[J]. 机械工程学报,2018,54(23):185-191. WANG Junliang,ZHANG Jie. Big data driven key factor identification for cycle-time forecasting of wafer lots in semiconductor wafer fabrication system[J]. Journal of Mechanical Engineering,2018,54(23):185-191. [18] HUANG S H,GUO Y,LIU D Y,et al. A two-stage transfer learning-based deep learning approach for production progress prediction in IoT-enabled manufacturing[J]. IEEE Internet of Things Journal,2019,6(6):10627-10638. [19] FANG W G,GUO Y,LIAO W H,et al. Big data driven jobs remaining time prediction in discrete manufacturing system:A deep learning-based approach[J]. International Journal of Production Research,2020,58:2751-2766. [20] LI L. A systematic-theoretic analysis of data-driven throughput bottleneck detection of production systems[J]. Journal of Manufacturing Systems,2018,47:43-52. [21] LAI X J,SHUI H Y,NI J. A two-layer long short-term memory network for bottleneck prediction in multi-job manufacturing systems[C/CD]//Proceedings of the ASME 201813rd ASME International Manufacturing Science and Engineering Conference,Texas,2018. [22] SUBRAMANIYAN M,SKOOGH A,SALOMONSSON H,et al. A data-driven algorithm to predict throughput bottlenecks in a production system based on active periods of the machines[J]. Computers & Industrial Engineering,2018,125(11):533-544. [23] 李晓娟,孙文磊,袁逸萍,等. 扰动环境下作业车间网络多瓶颈识别方法研究[J]. 西安交通大学学报,2016,50(12):64-72. LI Xiaojuan,SUN Wenlei,YUAN Yiping,et al. Multi- bottleneck identification for job-shop network in disturbance environment[J]. Journal of Xi'an Jiaotong University,2016,50(12):64-72. [24] FANG W G,GUO Y,LIAO W H,et al. A parallel gated recurrent units (P-GRUs) network for the shifting lateness bottleneck prediction in make-to-order production system[J]. Computers & Industrial Engineering,2020,140:106246. [25] CHIEN C,LIU C M,CHUANG S,et al. Analysing semiconductor manufacturing big data for root cause detection of excursion for yield enhancement[J]. International Journal of Production Research,2017,55(17):5095-5107. [26] CAO X,LI T J,WANG Q,et al. RFID-based multi-attribute logistics information processing and anomaly mining in production logistics[J]. International Journal of Production Research,2019,57(17):5453-5466. [27] ZHANG Y,WANG W,WU N,et al. IoT-enabled real-time production performance analysis and exception diagnosis model[J]. IEEE Transactions on Automation Science and Engineering,2016,13(3):1318-1332. [28] HUANG S,GUO Y,YANG N,et al. A weighted fuzzy c-means clustering method with density peak for anomaly detection in iot-enabled manufacturing process[J]. Journal of Intelligent Manufacturing,2020,40(5):1-8. [29] 吕盛坪,乔立红. 工艺规划与车间调度及两者集成的研究现状和发展趋势[J]. 计算机集成制造系统,2014,20(2):290-300. LÜ Shengping,QIAO Lihong. Current status and developing trend of process planning and Job Shop scheduling[J]. Computer Integrated Manufacturing Systems,2014,20(2):290-300. [30] ZHONG R Y,HUANG G Q,LAN S,et al. A two-level advanced production planning and scheduling model for RFID-enabled ubiquitous manufacturing[J]. Advanced Engineering Informatics,2015,29(4):799-812. [31] JI W,WANG L. Big data analytics based fault prediction for shop floor scheduling[J]. Journal of Manufacturing Systems,2017,43:187-194. [32] WANG C,JIANG P. Manifold learning based rescheduling decision mechanism for recessive disturbances in RFID-driven job shops[J]. Journal of Intelligent Manufacturing,2018,29(7):1485-1500. |