• CN:11-2187/TH
  • ISSN:0577-6686

›› 2011, Vol. 47 ›› Issue (7): 164-170.

• 论文 • 上一篇    下一篇

扫码分享

基于动态径向基函数代理模型的优化策略

彭磊;刘莉;龙腾   

  1. 北京理工大学宇航学院
  • 发布日期:2011-04-05

Optimization Strategy Using Dynamic Radial Basis Function Metamodel

PENG Lei;LIU Li;LONG Teng   

  1. School of Aerospace Engineering, Beijing Institute of Technology
  • Published:2011-04-05

摘要: 针对飞行器多学科设计优化中传统的静态代理模型方法全局近似精度难以保证与计算效率较低的问题,提出一种基于动态径向基函数代理模型的优化策略。通过Maximin拉丁超方计算试验设计在设计空间中选择初始样本点,构造径向基函数代理模型,并通过全局优化算法对当前代理模型进行优化获得原优化问题的可能最优解,根据已知信息构造重点采样空间,在优化过程中逐步更新重点采样空间并在其内部增加样本点,并更新代理模型以提高代理模型在全局最优解附近的近似精度,直至优化迭代收敛。将本优化策略应用于数学测试算例和NASA减速器优化设计中,优化结果表明,使用本优化策略可以获得分析模型的全局最优解。与直接使用遗传算法相比,计算分析模型的次数减少了95%,相比于传统的静态径向基函数代理模型方法,计算分析模型的次数减少了50%。

关键词: 动态代理模型, 多学科设计优化, 飞行器优化设计, 径向基函数, 重点采样空间

Abstract: Since global approximation accuracy of traditional static metamodel is difficult to be ensured and its computation efficiency is relatively low for flight vehicle multidisciplinary design optimization, the optimization strategy using dynamic radial basis function metamodel is proposed to overcome such defects above. The radial basis function metamodel is constructed with initial sampling points generated by Maximin Latin hypercube design method. Global optimization algorithm is employed to optimize current metamodel to find the potential global optimum of the true optimization problem, and then, the significant sampling space based on current known information can be identified. During optimization process, the new sampling points in the significant sampling space are added, and the metamodel is updated for the purpose of improving the approximation accuracy around the global optimum until the potential global optimum is satisfied the convergence conditions. The optimization strategy is validated by using a benchmark numerical test problem and the NASA speed reducer optimization design. As the optimization results shown, the global optimal solutions are obtained by using the dynamic metamodel optimization strategy. Compared with directly using genetic algorithm, 95% reduction on the number of function evaluations using dynamic metamodel is got. Compared with traditional static radial basis function metamodel, the number of function evaluations using dynamic metamodel is reduced by 50%.

Key words: Dynamic metamodel, Flight vehicle optimization design, Multidisciplinary design optimization, Radial basis function, Significant sampling space

中图分类号: