机械工程学报 ›› 2020, Vol. 56 ›› Issue (24): 219-245.doi: 10.3901/JME.2020.24.219
周奇1, 杨扬2, 宋学官3, 韩忠华4,5, 程远胜6, 胡杰翔1, 舒乐时7,8, 蒋平7,8
收稿日期:
2020-03-09
修回日期:
2020-09-08
出版日期:
2020-12-20
发布日期:
2021-02-05
通讯作者:
蒋平(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为激光加工机理与工艺、基于代理模型的加工参数优化方法等。E-mail:jiangping@hust.edu.cn
作者简介:
周奇,男,1990年出生,博士,副教授。主要研究方向为多学科优化设计、变可信度近似建模、装备稳健性优化设计及机器学习等。E-mail:qizhouhust@gmail.com;qizhou@hust.edu.cn;杨扬,女,1987年出生,博士,副教授。主要研究方向为数控铣削工艺、工艺参数优化方法、变可信度近似建模等。E-mail:yangyang@mail.hzau.edu.cn;宋学官,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为机-电-热-流等多学科耦合建模与协同优化、工业大数据挖掘及数据驱动的预测技术、人工智能与装备智能化技术等。E-mail:sxg@dlut.edu.cn;韩忠华,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为代理模型理论、算法及其在飞行器设计中的应用、飞行器气动与多学科优化设计理论与方法、计算流体力学算法及应用、计算气动声学与噪声预测、翼型设计等。E-mail:hanzh@nwpu.edu.cn;程远胜,男,1962年出生,博士,教授,博士研究生导师。主要研究方向为船舶结构分析与轻量化设计、结构冲击动力学与防护设计、基于代理模型的优化算法等。E-mail:yscheng@hust.edu.cn;胡杰翔,男,1993年出生,博士。主要研究方向为变可信度近似建模、模型验证与校核、基于代理模型的优化算法等。E-mail:jiexianghu@hust.edu.cn;舒乐时,男,1992年出生,博士。主要研究方向为变可信度近似建模、贝叶斯优化、多目标进化算法等。E-mail:leshishu@gmail.com
基金资助:
ZHOU Qi1, YANG Yang2, SONG Xueguan3, HAN Zhonghua4,5, CHENG Yuansheng6, HU Jiexiang1, SHU Leshi7,8, JIANG Ping7,8
Received:
2020-03-09
Revised:
2020-09-08
Online:
2020-12-20
Published:
2021-02-05
摘要: 变可信度近似模型通过融合不同精度分析模型的数据,可有效平衡近似模型预测性能和建模成本之间的矛盾,在复杂装备优化设计中受到广泛的关注。综述变可信度近似模型及其在复杂装备优化设计中的应用研究进展。概述三类常用变可信度近似建模方法的基本思想,并介绍变可信度近似建模方法研究的最新进展。回顾面向变可信度近似模型试验设计方法的发展现状,包括一次性试验设计方法和序贯试验设计方法。综述直接影响变可信度近似模型优化设计求解精度和效率的两类近似模型管理策略,探讨基于变可信度近似模型的智能优化和可靠性/稳健性优化这两个领域前沿问题。归纳总结变可信度近似模型应用于复杂装备优化设计的现状。针对变可信度近似建模及其优化设计给出了一些应用建议,并指出未来值得深入研究的方向。
中图分类号:
周奇, 杨扬, 宋学官, 韩忠华, 程远胜, 胡杰翔, 舒乐时, 蒋平. 变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J]. 机械工程学报, 2020, 56(24): 219-245.
ZHOU Qi, YANG Yang, SONG Xueguan, HAN Zhonghua, CHENG Yuansheng, HU Jiexiang, SHU Leshi, JIANG Ping. Survey of Multi-fidelity Surrogate Models and their Applications in the Design and Optimization of Engineering Equipment[J]. Journal of Mechanical Engineering, 2020, 56(24): 219-245.
[1] FORRESTER A I,KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences,2009,45(1-3):50-79. [2] 武宇飞,龙腾,史人赫,等. 针对高维优化问题的快速追峰采样方法[J]. 机械工程学报,2019,55(3):138-146. WU Yufei,LONG Teng,SHI Renhe,et al. A rapid mode pursuing sampling method for high dimensional optimization problems[J]. Journal of Mechanical Engineering,2019,55(3):138-146. [3] YI W,ZHENG Y,WANG W,et al. Optimal design and force control of a nine-cable-driven parallel mechanism for lunar takeoff simulation[J]. Chinese Journal of Mechanical Engineering,2019,32(1):73. [4] WANG G G,SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design,2007,129(4):370-380. [5] VIANA F A,GOGU C,HAFTKA R T. Making the most out of surrogate models:Tricks of the trade[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,ASME,2010:587-598. [6] LIU H,ONG Y-S,CAI J. A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[J]. Structural and Multidisciplinary Optimization,2018,57(1):393-416. [7] 龙腾,刘建,WANG G G,等. 基于计算试验设计与代理模型的飞行器近似优化策略探讨[J]. 机械工程学报,2016,52(14):79-105. LONG Teng,LIU Jian,WANG G G,et al. Discuss on approximate optimization strategies using design of computer experiments and metamodels for flight vehicle design[J]. Journal of Mechanical Engineering,2016,52(14):79-105. [8] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11):3197-3225. HAN Zhonghua. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225. [9] BHOSEKAR A,IERAPETRITOU M. Advances in surrogate based modeling,feasibility analysis,and optimization:A review[J]. Computers & Chemical Engineering,2018,108:250-267. [10] CHATTERJEE T,CHAKRABORTY S,CHOWDHURY R. A critical review of surrogate assisted robust design optimization[J]. Archives of Computational Methods in Engineering,2019,26(1):245-274. [11] STORK J,FRIESE M,ZAEFFERER M,et al. Open issues in surrogate-assisted optimization[M]. Cham:Springer,2020. [12] GARUD S S,KARIMI I A,KRAFT M. Design of computer experiments:A review[J]. Computers & Chemical Engineering,2017,106(1):71-95. [13] SLOTNICK J,KHODADOUST A,ALONSO J,et al. CFD vision 2030 study:A path to revolutionary computational aerosciences[R]. NASA/CR-2014-218178,NF1676L-18332,2014. [14] SLOTNICK J P,KHODADOUST A,ALONSO J J,et al. Enabling the environmentally clean air transportation of the future:A vision of computational fluid dynamics in 2030[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical Engineering Sciences,2014,372(2022):20130317. [15] VIANA F A,SIMPSON T W,BALABANOV V,et al. Special section on multidisciplinary design optimization:Metamodeling in multidisciplinary design optimization:How far have we really come?[J]. AIAA Journal,2014,52(4):670-690. [16] 韩忠华,许晨舟,乔建领,等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020,41(3):2-41. HAN Zhonghua,XU Chenzhou,QIAO Jianling,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica,2020,41(3):2-41. [17] ZHENG J,QIU H,FENG H. The variable fidelity optimization for simulation-based design:A review[C]//Proceedings of the 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD),IEEE,2012:289-294. [18] 郑君,蒋学鹏. 基于变可信度近似的设计优化关键技术综述[J]. 河北科技大学学报,2018,39(5):386-393. ZHENG Jun,JIANG Xuepeng. Review on the key techniques of the variable-fidelity approximation based design optimization[J]. Journal of Hebei University of Science and Technology,2018,39(5):386-393. [19] PEHERSTORFER B,WILLCOX K,GUNZBURGER M. Survey of multifidelity methods in uncertainty propagation,inference,and optimization[J]. SIAM Review,2018,60(3):550-591. [20] FERNÁNDEZ-GODINO M G,PARK C,KIM N H,et al. Issues in deciding whether to use multifidelity surrogates[J]. AIAA Journal,2019,57(1):1-16. [21] BERCI M,GASKELL P H,HEWSON R W,et al. Multifidelity metamodel building as a route to aeroelastic optimization of flexible wings[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2011,225(9):2115-2137. [22] CAI X,QIU H,GAO L,et al. Adaptive radial-basis-function-based multifidelity metamodeling for expensive black-box problems[J]. AIAA Journal,2017,55(1):151-166. [23] HAFTKA R T. Combining global and local approximations[J]. AIAA Journal,1991,29(9):1523-1525. [24] LEWIS R M,NASH S G. A multigrid approach to the optimization of systems governed by differential equations[C]//Symposium on Multidisciplinary Analysis and Optimization. Long Beach,CA,2000:4890. [25] ZHENG J,SHAO X,GAO L,et al. A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction[J]. Journal of Engineering Design,2013,24(8):604-622. [26] ZHENG J,SHAO X,GAO L,et al. Difference mapping method using least square support vector regression for variable-fidelity metamodelling[J]. Engineering Optimization,2014,47(6):719-736. [27] XIONG Y,CHEN W,TSUI K L. A new variable-fidelity optimization framework based on model fusion and objective-oriented sequential sampling[J]. Journal of Mechanical Design,2008,130(11):111401. [28] ZHOU Q,SHAO X,JIANG P,et al. Differing mapping using ensemble of metamodels for global variable-fidelity metamodeling[J]. CMES:Computer Modeling in Engineering & Sciences,2015,106(5):323-355. [29] ARIYARIT A,KANAZAKI M. Multi-fidelity multi-objective efficient global optimization applied to airfoil design problems[J]. Applied Sciences,2017,7(12):1318. [30] SONG X,LÜ L,SUN W,et al. A radial basis function-based multi-fidelity surrogate model:Exploring correlation between high-fidelity and low-fidelity models[J]. Structural and Multidisciplinary Optimization,2019,60(3):965-981. [31] FERNÁNDEZ-GODINO M G,DUBREUIL S,BARTOLI N,et al. Linear regression-based multifidelity surrogate for disturbance amplification in multiphase explosion[J]. Structural and Multidisciplinary Optimization,2019,60(6):2205-2220. [32] SHU L,JIANG P,SONG X,et al. Novel approach for selecting low-fidelity scale factor in multifidelity metamodeling[J]. AIAA Journal,2019,57(12):5320-5330. [33] ZHANG Y,KIM N H,PARK C,et al. Multifidelity surrogate based on single linear regression[J]. AIAA Journal,2018,56(12):4944-4952. [34] 李晓斌,张为华,陈小前. 基于Kriging近似函数的变复杂度近似模型[J]. 宇航学报,2006,27(12):155-159. LI Xiaobin,ZHANG Weihua,CHEN Xiaoqian. Variable complexity approximation model using Kriging approximation function[J]. Journal of Astronautics,2006,27(12):155-159. [35] GANO S E,RENAUD J E,SANDERS B. Hybrid variable fidelity optimization by using a kriging-based scaling function[J]. AIAA Journal,2005,43(11):2422-2433. [36] LI M. An improved kriging-assisted multi-objective genetic algorithm[J]. Journal of Mechanical Design,2011,133(7):071008. [37] HAN Z-H,ZHANG Y,SONG C X,et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal,2017,55(12):4330-4346. [38] MEHDAD E,KLEIJNEN J P C. Classic Kriging versus Kriging with bootstrapping or conditional simulation:Classic Kriging's robust confidence intervals and optimization[J]. Journal of the Operational Research Society,2015,66(11):1804-1814. [39] KLEIJNEN J P C. Kriging metamodeling in simulation:A review[J]. European Journal of Operational Research,2009,192(3):707-716. [40] WANG H,CHEN L,LI E. Time dependent sheet metal forming optimization by using Gaussian process assisted firefly algorithm[J]. International Journal of Material Forming,2018,11(2):279-295. [41] PALAR P S,TSUCHIYA T,PARKS G T. Multi-fidelity non-intrusive polynomial chaos based on regression[J]. Computer Methods in Applied Mechanics and Engineering,2016,305:579-606. [42] VIANA F A,STEFFEN V,BUTKEWITSCH S,et al. Optimization of aircraft structural components by using nature-inspired algorithms and multi-fidelity approximations[J]. Journal of Global Optimization,2009,45(3):427-449. [43] MARDUEL X,TRIBES C,TRÉPANIER J-Y J O,et al. Variable-fidelity optimization:Efficiency and robustness[J]. Optimization & Engineering,2006,7(4):479-500. [44] TAO J,SUN G. Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization[J]. Aerospace Science and Technology,2019,92:722-737. [45] SUN G,LI G,STONE M,et al. A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials[J]. Computational Materials Science,2010,49(3):500-511. [46] GANO S E,RENAUD J E,AGARWAL H,et al. Reliability-based design using variable-fidelity optimization[J]. Structure and Infrastructure Engineering,2006,2(3-4):247-260. [47] SUN G,LI G,LI Q. Variable fidelity design based surrogate and artificial bee colony algorithm for sheet metal forming process[J]. Finite Elements in Analysis and Design,2012,59:76-90. [48] MARCH A,WILLCOX K. Provably convergent multifidelity optimization algorithm not requiring high-fidelity derivatives[J]. AIAA Journal,2012,50(5):1079-1089. [49] ZHOU Q,WANG Y,CHOI S K,et al. A sequential multi-fidelity metamodeling approach for data regression[J]. Knowledge-Based Systems,2017,134:199-212. [50] ZHOU Q,SHAO X,JIANG P,et al. An active learning metamodeling approach by sequentially exploiting difference information from variable-fidelity models[J]. Advanced Engineering Informatics,2016,30(3):283-297. [51] MARCH A,WILLCOX K. Constrained multifidelity optimization using model calibration[J]. Structural and Multidisciplinary Optimization,2012,46(1):93-109. [52] LEE D,VAN NGUYEN N,TYAN M,et al. Enhanced multi-fidelity model for flight simulation using global exploration and the Kriging method[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2016,231(4):606-620. [53] GANO S E,RENAUD J E,MARTIN J D,et al. Update strategies for kriging models used in variable fidelity optimization[J]. Structural and Multidisciplinary Optimization,2006,32(4):287-298. [54] RAJNARAYAN D,HAAS A,KROO I. A multifidelity gradient-free optimization method and application to aerodynamic design[C]//Multidisciplinary Analysis and Optimization Conference,AIAA/ISSMO,2008:6020. [55] ZHOU Q,SHAO X,JIANG P,et al. An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function[J]. Simulation Modelling Practice and Theory,2015,59(12):18-35. [56] KOU J,ZHANG W. Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils[J]. Applied Mathematical Modelling,2019,76:832-855. [57] ALEXANDROV N M,LEWIS R M,GUMBERT C R,et al. Approximation and model management in aerodynamic optimization with variable-fidelity models[J]. Journal of Aircraft,2001,38(6):1093-1101. [58] SHARMA A,GOGU C,MARTINEZ O,et al. Multi-fidelity design of an integrated thermal protection system for spacecraft reentry[C]//Structural Dynamics,and Materials Conference,Schaumburg:AIAA/ASME/ASCE/AHS/ASC Structures,2008:2062. [59] GOLDFELD Y,VERVENNE K,ARBOCZ J,et al. Multi-fidelity optimization of laminated conical shells for buckling[J]. Structural and Multidisciplinary Optimization,2005,30(2):128-141. [60] VENKATARAMAN S. Reliability optimization using probabilistic sufficiency factor and correction response surface[J]. Engineering Optimization,2006,38(6):671-685. [61] CHANG K J,HAFTKA R T,GILES G L,et al. Sensitivity-based scaling for approximating structural response[J]. Journal of Aircraft,1993,30(2):283-288. [62] HUTCHISON M G,UNGER E R,MASON W H,et al. Variable-complexity aerodynamic optimization of a high-speed civil transport wing[J]. Journal of Aircraft,1994,31(1):110-116. [63] ALEXANDROV N,NIELSEN E,LEWIS R,et al. First-order model management with variable-fidelity physics applied to multi-element airfoil optimization[C]//Symposium on Multidisciplinary Analysis and Optimization,2000:4886. [64] LIU Y,COLLETTE M. Improving surrogate-assisted variable fidelity multi-objective optimization using a clustering algorithm[J]. Applied Soft Computing,2014,24:482-493. [65] KOZIEL S,LEIFSSON L T. Multi-objective airfoil design using variable-fidelity CFD simulations and response surface surrogates[C]//Multidisciplinary Design Optimization Conference,AIAA,2014:0289. [66] HU D,MAO J,WANG R,et al. Optimization strategy for a shrouded turbine blade using variable-complexity modeling methodology[J]. AIAA Journal,2016,54(9):2808-2818. [67] NGUYEN N V,TYAN M,LEE J W. A modified variable complexity modeling for efficient multidisciplinary aircraft conceptual design[J]. Optimization and Engineering,2014,16(2):483-505. [68] TYAN M,NGUYEN N V,LEE J W. Improving variable-fidelity modelling by exploring global design space and radial basis function networks for aerofoil design[J]. Engineering Optimization,2014,47(7):885-908. [69] HAO P,FENG S,LI Y,et al. Adaptive infill sampling criterion for multi-fidelity gradient-enhanced Kriging model[J]. Structural and Multidisciplinary Optimization,2020:1-21. [70] RUMPFKEIL M P,BERAN P. Construction of dynamic multifidelity locally optimized surrogate models[J]. AIAA Journal,2017,55(9):3169-3179. [71] HAN Z H,GÖRTZ S,ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced Kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology,2013,25(1):177-189. [72] CLARK D L,MAKAS A,GRANDHI R V. Status of multifidelity model management strategies in aircraft design[C]//Multidisciplinary Analysis and Optimization Conference,AIAA/ISSMO,2017:4431. [73] SON S H,CHOI D H. The effects of scale factor and correction on the multi-fidelity model[J]. Journal of Mechanical Science and Technology,2016,30(5):2075-2081. [74] FISCHER C C,GRANDHI R V. A surrogate-based adjustment factor approach to multi-fidelity design optimization[C]//Non-Deterministic Approaches Conference. Kissimmee,Florida:AIAA,2015:1375. [75] BANDLER J W,BIERNACKI R M,CHEN S H,et al. Space mapping technique for electromagnetic optimization[J]. Microwave Theory and Techniques,IEEE Transactions on,1994,42(12):2536-2544. [76] REN J,LEIFSSON L T,KOZIEL S,et al. Multi-fidelity aerodynamic shape optimization using manifold mapping[C]//Structural Dynamics,and Materials Conference. San Diego,California:AIAA/ASCE/AHS/ASC Structures,2016:0419. [77] ROBINSON T,ELDRED M,WILLCOX K,et al. Strategies for multifidelity optimization with variable dimensional hierarchical models[C]//47th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th,2006:1819. [78] ZHENG J,SHAO X,GAO L,et al. A prior-knowledge input LSSVR metamodeling method with tuning based on cellular particle swarm optimization for engineering design[J]. Expert Systems with Applications,2014,41(5):2111-2125. [79] JIANG P,XIE T,ZHOU Q,et al. A space mapping method based on Gaussian process model for variable fidelity metamodeling[J]. Simulation Modelling Practice and Theory,2018,81:64-84. [80] ZHOU Q,JIANG P,SHAO X,et al. A variable fidelity information fusion method based on radial basis function[J]. Advanced Engineering Informatics,2017,32:26-39. [81] KENNEDY M C,O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika,2000,87(1):1-13. [82] QIAN P Z G,WU C F J. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments[J]. Technometrics,2008,50(2):192-204. [83] LE GRATIET L,GARNIER J. Recursive Co-Kriging model for design of computer experiments with multiple levels of fidelity[J]. International Journal for Uncertainty Quantification,2014,4(5):365-386. [84] HAN Z H,GÖRTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(9):1885-1896. [85] PARK C,HAFTKA R T,KIM N H. Low-fidelity scale factor improves Bayesian multi-fidelity prediction by reducing bumpiness of discrepancy function[J]. Structural and Multidisciplinary Optimization,2018,58(2):399-414. [86] HAN Z,ZIMMERMAN R,GÖRTZ S. Alternative cokriging method for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(5):1205-1210. [87] ZIMMERMANN R,HAN Z-H J A,SCIENCES A I M. Simplified cross-correlation estimation for multi-fidelity surrogate cokriging models[J]. Advances and Applications in Mathematical Sciences,2010,7(2):181-202. [88] BERTRAM A,ZIMMERMANN R. Theoretical investigations of the new Co-Kriging method for variable-fidelity surrogate modeling[J]. Advances in Computational Mathematics,2018,44(6):1693-1716. [89] 卢月明,王亮,仇阿根,等. 一种基于主成分分析的协同克里金插值方法[J]. 测绘通报,2017(11):51-57,63. LU Yueming,WANG Liang,QIU Agen,et al. A Kriging interpolation method based on principal component analysis[J]. Bulletin of Surveying and Mapping,2017(11):51-57,63. [90] YAMAZAKI W,MAVRIPLIS D J. Derivative-enhanced variable fidelity surrogate modeling for aerodynamic functions[J]. AIAA Journal,2013,51(1):126-137. [91] XIAO M,ZHANG G,BREITKOPF P,et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation,2018,323:120-131. [92] HAN Zhonghua,XU Chenzhou,ZHANG Liang,et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics,2020,33(1):31-47. [93] ROKITA T,FRIEDMANN P P. Multifidelity Co-Kriging for high-dimensional output functions with application to hypersonic airloads computation[J]. AIAA Journal,2018,56(8):3060-3070. [94] LIU H,ONG Y S,CAI J,et al. Cope with diverse data structures in multi-fidelity modeling:A Gaussian process method[J]. Engineering Applications of Artificial Intelligence,2018,67:211-225. [95] ZAYTSEV A,BURNAEV E. Large scale variable fidelity surrogate modeling[J]. Annals of Mathematics and Artificial Intelligence,2017,81(1-2):167-186. [96] BURNAEV E,ZAYTSEV A. Surrogate modeling of multifidelity data for large samples[J]. Journal of Communications Technology and Electronics,2015,60(12):1348-1355. [97] CHEN S S,JIANG Z,YANG S X,et al. Nonhierarchical multi-model fusion using spatial random processes[J]. International Journal for Numerical Methods in Engineering,2016,106(7):503-526. [98] PERDIKARIS P,RAISSI M,DAMIANOU A,et al. Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling[J]. Proc. Math. Phys. Eng. Sci.,2017,473(2198):20160751. [99] OWEN A B. Orthogonal arrays for computer experiments,integration and visualization[J]. Statistica Sinica,1992:439-452. [100] MCKAY M D,BECKMAN R J,CONOVER W J. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics,1979,21(2):239-245. [101] FANG K T,LIN D K,WINKER P,et al. Uniform design:Theory and application[J]. Technometrics,2000,42(3):237-248. [102] JOHNSON M E,MOORE L M,YLVISAKER D. Minimax and maximin distance designs[J]. Journal of Statistical Planning and Inference,1990,26(2):131-148. [103] CHEN V C P,TSUI K L,BARTON R R,et al. A review on design,modeling and applications of computer experiments[J]. IIE Transactions,2006,38(4):273-291. [104] PRONZATO L,MÜLLER W G. Design of computer experiments:Space filling and beyond[J]. Statistics Computing,2012,22(3):681-701. [105] LE GRATIET L. Multi-fidelity Gaussian process regression for computer experiments[D]. Paris:Université Paris-Diderot,2013. [106] PARK C,HAFTKA R T,KIM N H. Remarks on multi-fidelity surrogates[J]. Structural and Multidisciplinary Optimization,2017,55(3):1029-1050. [107] YI J,LI X,XIAO M,et al. Construction of nested maximin designs based on successive local enumeration and modified novel global harmony search algorithm[J]. Engineering Optimization,2017,49(1):161-180. [108] BALABANOV V,GROSSMAN B,WATSON L,et al. Multifidelity response surface model for HSCT wing bending material weight[C]//Symposium on Multidisciplinary Analysis and Optimization,AIAA/USAF/NASA/ISSMO,1998:4804. [109] QIAN P Z,TANG B,WU C J. Nested space-filling designs for computer experiments with two levels of accuracy[J]. Statistica Sinica,2009:287-300. [110] QIAN P Z. Nested Latin hypercube designs[J]. Biometrika,2009,96(4):957-970. [111] RENNEN G,HUSSLAGE B,VAN DAM E R,et al. Nested maximin Latin hypercube designs[J]. Structural and Multidisciplinary Optimization,2009,41(3):371-395. [112] TSAI S F. Construction of nested orthogonal arrays of parallel-flats type[J]. Journal of Statistical Planning and Inference,2017,181:41-51. [113] QIAN P Z G. Sliced Latin hypercube designs[J]. Journal of the American Statistical Association,2012,107(497):393-399. [114] HE X,QIAN P Z. Nested orthogonal array-based Latin hypercube designs[J]. Biometrika,2011,98(3):721-731. [115] XIONG S,QIAN P Z G,WU C F J. Sequential design and analysis of high-accuracy and low-accuracy computer codes[J]. Technometrics,2013,55(1):37-46. [116] ZHOU Q,SHAO X Y,JIANG P,et al. An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling[J]. Journal of Engineering Design,2016,27(4-6):205-231. [117] BENAMARA T,BREITKOPF P,LEPOT I,et al. Adaptive infill sampling criterion for multi-fidelity optimization based on Gappy-POD[J]. Structural and Multidisciplinary Optimization,2016,54(4):843-855. [118] XIA B,HONG S,CHOI K,et al. Optimal design of winding transposition of power transformer using adaptive Co-Kriging surrogate model[J]. IEEE Transactions on Magnetics,2017,53(6):1-4. [119] ELSAYED K. Optimization of the cyclone separator geometry for minimum pressure drop using Co-Kriging[J]. Powder Technology,2015,269:409-424. [120] CROMBECQ K,LAERMANS E,DHAENE T. Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling[J]. European Journal of Operational Research,2011,214(3):683-696. [121] JIN R,CHEN W,SUDJIANTO A. On sequential sampling for global metamodeling in engineering design[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,ASME,2002:539-548. [122] GARUD S S,KARIMI I A,BROWNBRIDGE G P,et al. Evaluating smart sampling for constructing multidimensional surrogate models[J]. Computers & Chemical Engineering,2018,108:276-288. [123] LE GRATIET L,CANNAMELA C. Co-Kriging-based sequential design strategies using fast cross-validation techniques for multi-fidelity computer codes[J]. Technometrics,2015,57(3):418-427. [124] PELLEGRINI R,LEOTARDI C,IEMMA U,et al. A multi-fidelity adaptive sampling method for metamodel-based uncertainty quantification of computer simulations[C]//Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering,ECCOMAS,2016:1-17. [125] GHOSH S,KRISTENSEN J,ZHANG Y,et al. A strategy for adaptive sampling of multi-fidelity Gaussian processes to reduce predictive uncertainty[C]//International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,ASME,2019:98418. [126] PELLEGRINI R,LEOTARDI C,IEMMA U,et al. A multi-fidelity adaptive sampling method for metamodel-based uncertainty quantification of computer simulations[C]//Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering,ECCOMAS,2016:1-17. [127] ZHOU Q,SHAO X,JIANG P,et al. An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling[J]. Journal of Engineering Design,2016,27(4-6):205-231. [128] XU S,LIU H,WANG X,et al. A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation[J]. Journal of Mechanical Design,2014,136(7):071009. [129] AUTE V,SALEH K,ABDELAZIZ O,et al. Cross-validation based single response adaptive design of experiments for Kriging metamodeling of deterministic computer simulations[J]. Structural and Multidisciplinary Optimization,2013,48(3):581-605. [130] LV L,SHI M,SONG X,et al. A fast-converging ensemble infilling approach balancing global exploration and local exploitation:The go-inspired hybrid infilling strategy[J]. Journal of Mechanical Design,2020,142(2):021403. [131] LOEPPKY J L,SACKS J,WELCH W J. Choosing the sample size of a computer experiment:A practical guide[J]. Technometrics,2009,51(4):366-376. [132] YANG Y,GAO Z,CAO L. Identifying optimal process parameters in deep penetration laser welding by adopting hierarchical-Kriging model[J]. Infrared Physics Technology,2018,92:443-453. [133] SINGH P,COUCKUYT I,ELSAYED K,et al. Multi-objective geometry optimization of a gas cyclone using triple-fidelity co-Kriging surrogate models[J]. Journal of Optimization Theory and Applications,2017,175(1):172-193. [134] ZHOU Q,YANG Y,JIANG P,et al. A multi-fidelity information fusion metamodeling assisted laser beam welding process parameter optimization approach[J]. Advances in Engineering Software,2017,110:85-97. [135] GANO S,PEREZ V,RENAUD J,et al. Multilevel variable fidelity optimization of a morphing unmanned aerial vehicle[C]//Structural Dynamics & Materials Conference,AIAA/ASME/ASCE/AHS/ASC Structures,2004:1763. [136] BRYSON D E,RUMPFKEIL M P. Multifidelity quasi-newton method for design optimization[J]. AIAA Journal,2018,56(10):4074-4086. [137] FISCHER C C,GRANDHI R V. A surrogate-based adjustment factor approach to multi-fidelity design optimization[C]//Non-deterministic Approaches Conference. Kissimmee,Florida:AIAA,2015:1375. [138] JONES D R,SCHONLAU M,WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization,1998,13(4):455-492. [139] SASENA M J,PAPALAMBROS P,GOOVAERTS P. Exploration of metamodeling sampling criteria for constrained global optimization[J]. Engineering Optimization,2002,34(3):263-278. [140] ARIYARIT A,SUGIURA M,TANABE Y,et al. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design[J]. Engineering Optimization,2018,50(6):1016-1040. [141] HUANG D,ALLEN T T,NOTZ W I,et al. Sequential kriging optimization using multiple-fidelity evaluations[J]. Structural and Multidisciplinary Optimization,2006,32(5):369-382. [142] ZHANG Y,HAN Z H,ZHANG K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization,2018,58(4):1431-1451. [143] MELIANI M,BARTOLI N,LEFEBVRE T,et al. Multi-fidelity efficient global optimization:Methodology and application to airfoil shape design[C]//Aviation 2019 Forum,AIAA,2019:3236. [144] KONTOGIANNIS S G,SAVILL A M,KIPOUROS T. A multi-objective multi-fidelity framework for global optimization[C]//Structural Dynamics,and Materials Conference,AIAA/ASCE/AHS/ASC Structures,2017:0136. [145] REISENTHEL P H,ALLEN T T. Application of multifidelity expected improvement algorithms to aeroelastic design optimization[C]//Multidisciplinary Design Optimization Conference,AIAA,2014:1490. [146] LIU Y,CHEN S,WANG F,et al. Sequential optimization using multi-level cokriging and extended expected improvement criterion[J]. Structural Multidisciplinary Optimization,2018,58(3):1155-1173. [147] CHEN S,JIANG Z,YANG S,et al. Multimodel fusion based sequential optimization[J]. AIAA Journal,2017,55(1):241-254. [148] XIONG Y,CHEN W,TSUI K L. A new variable-fidelity optimization framework based on model fusion and objective-oriented sequential sampling[J]. Journal of Mechanical Design,2008,130(11):699-708. [149] JIANG P,CHENG J,ZHOU Q,et al. Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations[J]. AIAA Journal,2019,57(12):5416-5430. |
[1] | 吕利叶, 鲁玉军, 王硕, 刘印, 李昆鹏, 宋学官. 代理模型技术及其应用:现状与展望[J]. 机械工程学报, 2024, 60(3): 254-281. |
[2] | 金霞, 段富海, 辛大志, 母刚. 基于设计空间缩减的多学科协同优化新方法[J]. 机械工程学报, 2015, 51(11): 133-141. |
[3] | 史国宏;陈勇;杨雨泽;姜欣;宋正超. 白车身多学科轻量化优化设计应用[J]. , 2012, 48(8): 110-114. |
[4] | 王成恩;马明旭;黄章俊. 耦合多学科设计系统中参数映射方法[J]. , 2009, 45(4): 231-237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||