[1] KNASTER J,MOESLANG A,MUROGA T. Materials research for fusion[J],Nature Physics,2016,12:424-434. [2] WAN Y,LI J,LIU Y,et al. Overview of the present progress and activities on the CFETR[J]. Nuclear Fusion,2017,57:102009. [3] KULCINSKI G L,RADEL R F,Davis A. Near term,low cost,14MeV fusion neutron irradiation facility for testing the viability of fusion structural materials[J]. Fusion Engineering and Design,2016,109-111:1072-1076. [4] PITTS R A,CARPENTIER S,ESCOURBIAC F,et al. Physics basis and design of the ITER plasma-facing components[J]. Journal of Nuclear Materials,2011,415(1):957-964. [5] RAFFRAY A R,NYGREN R,WHYTE D G,et al. High heat flux components-readiness to proceed from near term fusion systems to power plants[J]. Fusion Engineering and Design,2010,85(1):93-108. [6] BOLT H,BARABASH V,KRAUSS W,et al. Materials for plasma-facing components of fusion reactors[J]. Journal of Nuclear Materials,2004,329-333:67-73. [7] SHIMADA M,COSTLEY A.E,FEDERICI G,et al. Overview of goals and performance of ITER and strategy for plasma-wall interaction investigation[J]. Journal of Nuclear Materials,2005,337:808-815. [8] 吴玉程,林锦山,罗来马,等.面向等离子体钨基材料的辐照损伤行为研究现状[J].机械工程学报,2017,53(8):25-34. WU Yucheng,LIN Jinshan,LUO Laima,et al. Irradiation damage behavior research statues of tungsten-matrix materials facing plasma[J]. Journal of Mechanical Engineering,2017,53(8):25-34. [9] 周张健,钟志宏,沈卫平,等.聚变堆中面向等离子体材料的研究进展[J].材料导报,2005,19(12):5-12. ZHOU Zhangjian,ZHONG Zhihong,SHEN Weiping,et al. The development of plasma facing materials for fusion reactor[J]. Materials Reports,2005,19(12):5-12. [10] DAVIS J W,BARABASH V R,MAKHANKOV A,et al. Assessment of tungsten for use in the ITER plasma facing components[J]. Journal of Nuclear Materials,1998,258-263:308-312. [11] 孙兆轩,李强,王万景,等. ITER偏滤器钨/铜穿管模块的高热负荷测试及事后分析[J].核聚变与等离子体物理,2017,37(4):446-451. SUN Zhaoxuan,LI Qiang,WANG Wanjing,et al. High heat flux test and post examination of ITER divertor W/Cu monoblock mock-ups[J]. Nuclear Fusion and Plasma Physics,2017,37(4):446-451. [12] HIRAI T,PANAYOTIS S,BARABASH V,et al. Use of tungsten material for the ITER divertor[J]. Nuclear Materials and Energy,2016,9:616-622. [13] YOSHIDA N,IWAKIRI H,TOKUNAGA K,et al. Impact of low energy helium irradiation on plasma facing metals[J]. Journal of Nuclear Materials,2005,337-339:946-950. [14] ALIMOV V.K,ROTH J. Hydrogen isotope retention in plasma-facing materials:Review of recent experimental results[J]. Physica Scripta,2007,T128:6-13. [15] SHU W M,KAWASUSO A,YAMINISHI T. Recent findings on blistering and deuterium retention in tungsten exposed to high-fluence deuterium plasma[J]. Journal of Nuclear Materials,2009,386-388:356-359. [16] OGORODNIKOVA O V,KLIMOV K S,POSKAKALOV А G,et al. Deuterium and helium retention in W with and without He-induced W ‘fuzz’ exposed to pulsed high-temperature deuterium plasma[J]. Journal of Nuclear Materials,2019,515:150-159. [17] XU Q,SATO K,YOSHIIE T. Investigation of the interaction of He and D in FeBSi alloy[J]. Philosoophical Magazine Letters,2013,93:560-565. [18] CAO X Z,XU Q,SATO K,et al. Effects of dislocations on thermal helium desorption from nickel and iron[J]. Journal of Nuclear Materials,2011,417:1034-1037. [19] SUGANO R,MORISHITA K,KIMURA A,et al. Microstructural evolution in Fe and Fe-Cr model alloys after He+ ion irradiations[J]. Journal of Nuclear Materials,2004,329-333:942-946. [20] CHEN H,LUO L,CHEN J,et al. Effects of zirconium element on the microstructure and deuterium retention of W-Zr/Sc2O3 composites[J]. Scientific Reports,2016,6:32678. [21] 雷红,雒建斌,张朝辉.化学机械抛光技术的研究进展[J].上海大学学报,2003,9(6):494-502. LEI Hong,LUO Jianbin,ZHANG Chaohui. Advances in chemical mechanical polishing[J]. Journal of Shanghai University,2003,9(6):494-502. [22] 梅广益,张克华,文东辉.抛光液化学成分对钨化学机械抛光效果的影响研究[J].机械制造,2010,48(12):88-91. MEI Guangyi,ZHANG Kehua,WEN Donghui. Study on influence of chemical composition of polishing fluid on polishing result for tungsten[J]. Machinery,2010,48(12):88-91. [23] 贾英茜,牛新环,王现彬.钨CMP中碱性抛光液组分间化学作用及其影响[J].微纳电子技术,2015,52(5):334-338. JIA Yingqian,NIU Xinhuan,WANG Xianbin. Chemical interaction and influence of alkaline slurry compositions in tungsten CMP[J]. Micronanoelectronic Technology,2015,52(5):334-338. [24] SEO Y J,KIM N H,LEE W S. Chemical mechanical polishing and electrochemical characteristics of tungsten using mixed oxidizers with hydrogen peroxide and ferric nitrate[J]. Materials Letters,2006,60:1192-1197. [25] LIM G,LEE J H,KIM J,et al. Effects of oxidants on the removal of tungsten in CMP process[J]. Wear,2004,257:863-868. [26] JEONG Y A,PODDAR M K,RYU H Y,et al. Investigation of particle agglomeration with in-situ generation of oxygen bubble during the tungsten chemical mechanical polishing (CMP) process[J]. Microelectronic Engineering,2019,218:111133. [27] LARSEN-BASSE J,LIANG H. Probable role of abrasion in chemo-mechanical polishing of tungsten[J]. Wear,1999,233-235:647-654. [28] JACQUET P A. Electrolytic polishing of metallic surfaces[J]. Metal Finishing,1949,47(5):48-54. [29] DATTA M,VERCRUYSSE D. Transpassive dissolution of 420 stainless steel in concentrated acids under electropolishing conditions[J]. Journal of Electrochemical Society,1990,137(10):3016-3023. [30] DENG H,HUANG R,LIU K,et al. Abrasive-free polishing of tungsten alloy using electrochemical etching[J]. Electrochemistry Communications,2017,82:80-84. [31] WANG F,ZHANG X,DENG H. A comprehensive study on electrochemical polishing of tungsten[J]. Applied Surface Science,2019,475:587-597. [32] 刘奉妍,何代华,刘平,等.柠檬酸钠对电解抛光金属钨的影响[J].功能材料,2018,49(11):11163-11167. LIU Fengyan,HE Daihua,LIU Ping,et al. Effect of sodium citrate on electrolytic polishing of tungsten[J]. Journal of Functional Materials,49(11):11163-11167. [33] 王雪,李成山,于泽铭,等. NiW合金基带电化学抛光过程研究[J].稀有金属材料与工程,2012,41(6):1075-1079. WANG Xue,LI Chengshan,YU Zeming,et al. Electropolishing process research of NiW alloy substrates[J]. Rare Metal Materials and Engineering,2012,41(6):1075-1079. [34] 杜炳志,漆红兰.电化学抛光技术新进展[J],表面技术,2007,36(2):56-58. DU Bingzhi,QI Honglan. Development of electrochemical polishing technology[J]. Surface Technology,2007,36(2):56-58. [35] LIU D,ZHENG L,LUO L,et al. An overview of oxidation-resistant tungsten alloys for nuclear fusion[J]. Journal of Alloys and Compounds,2018,765:299-312. [36] 罗来马,黄科,昝祥,等.合金化改性钨基材料的组织和性能研究与发展[J].机械工程学报,2018,54(8):117-128. LUO Laima,HUANG Ke,ZAN Xiang,et al. Research and development of alloy modified tungsten-based materials[J]. Journal of Mechanical Engineering,2018,54(8):117-128. [37] KORDONSKI W I,JACOBS S D,GOLINI D,et al. Vertical wheel magnetorheological finishing machine for flat,convex,and concave surfaces[J]. Optical Fabrication and Testing,1996,7:146-149. [38] 尹韶辉,王永强,李叶鹏,等.蓝宝石基片的磁流变化学抛光试验研究[J].机械工程学报,2016,52(5):80-87. YIN Shaohui,WANG Yongqiang,LI Yepeng,et al. Experimental study on magnetorheological chemical polishing for sapphire substrate[J]. Journal of Mechanical Engineering,2016,52(5):80-87. [39] 彭小强,戴一帆,李圣怡.磁流变抛光的材料去除数学模型[J].机械工程学报,2004,40(4):67-70. PENG Xiaoqiang,DAI Yifan,LI Shengyi. Material removal model of magnetorheological finishing[J]. Journal of Mechanical Engineering,2004,40(4):67-70. [40] KHATRI N,MISHRA V,SHARMA R,et al. Improving the surface finish of diamond turned silicon with magneto-rheological finishing[J]. Materials Today:Proceedings,2017,4:10158-10162. [41] LIU J,LI X,ZHANG Y,et al. Predicting the material removal rate (MRR) in surface magnetorheological finishing (MRF) based on the synergistic effect of pressure and shear stress[J]. Applied Surface Science,2020,504:144492. [42] SHAFRIR S N,LAMBROPOULOS J C,JACOBS S D. A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides[J]. Precision Engineering,2007,31:83-93. [43] 阎秋生,汤爱军,路家斌,等.集群磁流变效应微磨头平面研抛加工参数研究[J].金刚石与磨料磨具工程,2008(5):66-70. YAN Qiusheng,TANG Aijun,LU Jiabin,et al. An experimental study of planarization technique with instantaneous tiny grinding wheel cluster based on magnetorheological effect[J]. Diamond& Abrasives Engineering,2008(5):66-70. [44] 李智.组合磁流变抛光的关键技术研究[D].长沙:湖南大学,2016. LI Zhi. Research on the key technology of combined magnetorheological finshing[D]. Changsha:Hunan University,2016. [45] ZHANG F,WANG H,LUAN D,Research on material removal of ultrasonic-magnetorheological compound finishing[J]. International Journal of Machining and Machinability of Materials,2007,2(1):50. [46] 胡扬轩,邓朝晖,万林林,等.用于蓝宝石材料加工的新型超精密抛光技术及复合抛光技术研究进展.材料导报,2018,32(9):1452-1458. HU Yangxuan,DENG Zhaohui,WAN Linlin,et al. Research progress of the novel ultra-precision polishing techniques and composite polishing techniques for sapphire material processing[J]. Materials Review,2018,32(9):1452-1458. [47] LI M,LYU B,YUAN J,et al. Shear-thickening polishing method[J]. International Journal of Machine Tools& Manufacture,2015,94:88-99. [48] LI M,LYU B,YUAN J,et al. Evolution and equivalent control law of surface roughness in shear-thickening polishing[J]. International Journal of Machine Tools& Manufacture,2016,108:113-126. [49] 李敏,吕冰海,袁巨龙,等.剪切增稠抛光的材料去除数学模型[J].机械工程学报,2016,52(7):142-151. LI Min,LÜ Binghai,YUAN Julong,et al. Material removal mathematics model of shear thickening polishing[J]. Journal of Mechanical Engineering,2016,52(7):142-151. [50] DOI T K,SESHIMO K,YAMAZAKI T,et al. Smart polishing of hard-to machine materials with an innovative dilatancy pad under high-pressure,high-speed,immersed condition[J]. ECS Journal of Solid State Science and Technology,2016,5(10):598-607. [51] DOI T K,YAMAZAKI T,SESHIMO K,et al. Development of innovative "dilatancy pad" realizing super high efficiency and high-grade polishing of SiC wide band gap semiconductor substrates[C]//International Conference on Planarization/CMP Technology,Kobe,2014,168-173. [52] 李建刚.我国超导托卡马克的现状及发展[J].中国科学院院刊,2007,22(5):404-410. LI Jiangang. Present status and development of superconducting Tokamak research in China[J]. Bulletin of Chinese Academy of Sciences,2007,22(5):404-410. [53] 李建刚.托卡马克研究的现状及发展[J].物理,2016,45(2):88-97. LI Jiangang. The status and progress of Tokamak research[J]. Physics,2016,45(2):88-97. |