• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (18): 180-187.doi: 10.3901/JME.2020.18.180

• 可再生能源与工程热物理 • 上一篇    下一篇

扫码分享

波浪能捕获液压系统的特性研究

高红1,2, 梁睿智1   

  1. 1. 上海交通大学机械与动力工程学院 上海 200240;
    2. 浙江大学流体动力与机电系统国家重点实验室 杭州 310058
  • 收稿日期:2019-10-21 修回日期:2020-04-07 出版日期:2020-09-20 发布日期:2020-11-17
  • 通讯作者: 高红(通信作者),女,1973年出生,副教授。主要研究方向为波浪能捕获与转化发电技术、浮式系统动力学。E-mail:hgao@sjtu.edu.cn
  • 作者简介:梁睿智,男,1994年出生。主要研究方向为波浪能捕获系统的数值模拟。E-mail:aptx4869@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金(51675327)和流体动力与机电系统国家重点实验室开放基金(GZKF-2018014)资助项目。

Performance Investigation of Hydraulic Wave Energy Capture System

GAO Hong1,2, LIANG Ruizhi1   

  1. 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240;
    2. The State Key Lab of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310058
  • Received:2019-10-21 Revised:2020-04-07 Online:2020-09-20 Published:2020-11-17

摘要: 为研究波浪能捕获液压系统在真实海况中的运行情况,建立随机波浪力作用下液压系统能量转化模型,模拟有效波高范围在1~4 m和能量周期范围在4~11 s的随机波浪力,获得随机波浪力作用下的液压波浪能捕获系统能量转化特性,探究有效波高和能量周期对波浪能捕获系统特性的影响规律。结果表明,该系统的液压缸平均位移随着有效波高增大而呈线性增加,随能量周期从4 s到7 s显著增加而7 s到11 s区间内逐渐趋于平稳;液压缸平均输出力、液压缸平均捕获功率、高压蓄能器压力、液压马达平均转速以及液压马达平均输出功率均随有效波高的增大而增大,随能量周期的增加迅速增大后逐渐减小,最佳能量周期在5~6 s。计算波浪能捕获系统的液压缸捕获功率矩阵、马达输出功率矩阵、液压系统转换效率矩阵。在有效波高为4 m,能量周期为5.5 s的海况下,液压缸平均捕获功率为62.44 kW,马达平均输出功率为47.52 kW,液压系统能量转换效率为76%,不同海况下液压系统的能量转换效率在74%~80%。结合南海海域15个点的全年海况统计数据,计算该波浪能捕获系统在15个观测点的全年捕获能量,单浮子在P11点全年能够捕获106.82 MW·h的能量,为波浪能捕获系统的设计以及选址提供理论依据。

关键词: 波浪能, 有效波高, 能量周期, 系统特性, 捕获功率

Abstract: A hydraulic wave energy capture system with irregular wave forces is established to simulate the system performance. Energy conversion characteristics of the hydraulic wave energy capture system are obtained while the significant wave height is in the range of 1 m to 4 m, and the energy period is in the range from 4 s to 11 s. Influences of significant wave height and energy period on the system are also investigated. The results show that the mean hydraulic cylinder displacement increases linearly with the increase of significant wave height. When the energy period changes from 4 s to 7 s the mean hydraulic cylinder displacement increases obviously and gradually trend to be stable as the energy period increases from 7 s to 11 s. The mean cylinder force, mean cylinder captured power, mean high-pressure accumulator pressure, mean motor speed and mean motor output power also increase with the increasing of significant wave height. When the energy period increases, those values rapidly increase and then gradually decrease. The maximal values occur when the energy period is between 5 s and 6 s. The cylinder captured power matrix, the motor output power matrix and the hydraulic system conversion efficiency matrix are also calculated. Under the significant wave height of 4m and energy period of 5.5 s, the mean hydraulic cylinder captured power is 62.44 kW, the mean motor output power is 47.52 kW and the hydraulic system conversion efficiency is 76%. The hydraulic system conversion efficiency in different sea states is in the range of 74% to 80%. With the sea state data of 15 typical points in the South China Sea, the annual captured energy of the hydraulic wave energy system year can be calculated. The annual captured energy of a single buoy is 106.82 MW·h at point P11. Those results provide a theoretical basis for the design and location selection of wave energy capture systems.

Key words: wave energy, significant wave height, energy period, system performance, captured power

中图分类号: