[1] BAI Qingshun,LIANG Yingchun,CHENG Kai,et al. Design and analysis of a novel large-aperture grating device and its experimental validation[J]. Proceedings of the Institution of Mechanical Engineers Part B,Journal of Engineering Manufacture,2013,227(9):1349-1359. [2] SHAO Zhongxi,WU Shilei,WU Jinguo,et al. A novel 5-DOF high-precision compliant parallel mechanism for large-aperture grating tiling[J]. Mechanical Sciences,2017,8(2):349-358. [3] 邵忠喜,韩德东,周维江,等. 机械式光栅拼接稳定性全闭环控制技术研究[J]. 机械工程学报,2015,51(10):205-212. SHAO Zhongxi,HAN Dedong,ZHOU Weijiang,et al. Research on the full closed-loop control technology to the stability of the mechanical grating tiling[J]. Journal of Mechanical Engineering,2015,51(10):205. [4] 邵忠喜,吴石磊,富宏亚. 一种新型大口径光栅拼接柔性定位机构刚度分析[J]. 机械工程学报,2018,54(13):117-125. SHAO Zhongxi,WU Shilei,FU Hongya. Stiffness analysis of a novel flexible positioning mechanism for large-aperture grating tiling[J]. Journal of Mechanical Engineering,2018,54(13):117-125. [5] WANG Yong,LIU Zhigang,BO Feng,et al. Design and control of an ultra-precision stage used in grating tiling[J]. Chinese Journal of Mechanical Engineering,2007,20(1):1-4. [6] HORNUNG M,BÖDEFELD R,SIEBOLD M,et al. Alignment of a tiled-grating compressor in a high-power chirped-pulse amplification laser system[J]. Applied optics,2007,46(30):7432-7435. [7] QIAO J,KALB A,GUARDALBEN M J,et al. Large-aperture grating tiling by interferometry for petawatt chirped pulse amplification systems[J]. Optics Express,2007,15(15):9562-9574. [8] Blanchot N,Bar E,Behar G,et al. Experimental demonstration of a synthetic aperture compression scheme for multi-petawatt high-energy lasers[J]. Optics express,2010,18(10):10088-10097. [9] 邱丽芳,王晶琳,刘宁宁. 基于拉力带参数的IST-LEJ设计与分析[J]. 机械工程学报,2018,54(13):94-101. QIU Lifang,WANG Jinglin,LIU Ningning. Design and analysis of IST-LEJ based on tension band parameters[J]. Journal of Mechanical Engineering,2018,54(13):94-101. [10] XIE Zhongtian,QIU Lifang,YANG Debin. Design and analysis of a variable stiffness inside-deployed lamina emergent joint[J]. Mechanism and Machine Theory,2018,120:166-177. [11] 李佳杰,陈贵敏. 柔性二级差动式微位移放大机构优化设计[J]. 机械工程学报,2019,55(21):21-28. LI Jiajie,CHEN Guimin. Optimal design of a compliant two-stage differential displacement amplification mechanism[J]. Journal of Mechanical Engineering,2019,55(21):21-28. [12] CHEN Guimin,MA Yakun,LI Jiajie. A tensural displacement amplifier employing elliptic-arc flexure hinges[J]. Sensors & Actuators A Physical,2016,247(247):307-315. [13] LI Jiajie,CHEN Guimin. A general approach for generating kinetostatic models for planar flexure-based compliant mechanisms using matrix representation[J]. Mechanism and Machine Theory,2018,129:131-147. [14] WANG Ruizhou,ZHANG Xianmin. Optimal design of a planar parallel 3-DOF nanopositioner with multi-objective[J]. Mechanism and Machine Theory,2017,112:61-83. [15] WANG Nianfeng,ZHANG Zhiyuan,ZHANG Xianmin,et al. Optimization of a 2-DOF micro-positioning stage using corrugated flexure units[J]. Mechanism and Machine Theory,2018,121:683-696. [16] WANG Nianfeng,LIANG Xiaohe,ZHANG Xianmin. Stiffness analysis of corrugated flexure beam used in compliant mechanisms[J]. Chinese Journal of Mechanical Engineering,2015,28(4):776-784. [17] WANG Nianfeng,ZHANG Zhiyuan,Yue FUE Fan,et al. Design and analysis of translational joints using corrugated flexural beams with conic curve segments[J]. Mechanism and Machine Theory,2019,132:223-235. [18] 王念峰,张志远,张宪民,等. 三种两自由度柔顺精密定位平台的性能对比与分析[J]. 机械工程学报,2018,54(13):102-109. WANG Nianfeng,ZHANG Zhiyuan,ZHANG Xianmin,et al. Performance comparison and analysis of three 2-DOF compliant precision positioning stages[J]. Journal of Mechanical Engineering,2018,54(13):102-109. [19] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering,2015,51(13):53-68. [20] 于靖军,裴旭,毕树生,等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报,2010,46(13):2-13. YU Jingjun,PEI Xu,BI Shusheng,et al. State-of-arts of design method for flexure mechanisms[J]. Journal of Mechanical Engineering,2010,46(13):2-13. [21] 李海洋,郝广波,于靖军,等. 空间平动柔性并联机构的系统设计方法研究[J]. 机械工程学报,2018,54(13):57-65. LI Haiyang,HAO Guangbo,YU Jingjun,et al. Systematic approach to the design of spatial translational compliant parallel mechanisms[J]. Journal of Mechanical Engineering,2018,54(13):57-65. [22] MURPHY M D,MIDHA A,HOWELL L L. The topological synthesis of compliant mechanisms[J]. Mechanism and Machine Theory,1996,31(2):185-199. [23] BLANDING D L. Exact constraint:Machine design using kinematic principle[M]. New York:ASME Press, 1999. [24] HAO Guangbo,KONG Xianwen. A structure design method for compliant parallel manipulators with actuation isolation[J]. Mechanical Sciences,2016,7(2):247-253. [25] SU Haijun,DOROZHKIN D V,VANCE J M. A screw theory approach for the conceptual design of flexible joints for compliant mechanisms[J]. Journal of Mechanisms and Robotics,2009,1(4):041009. [26] YU Jingjun,LI Shouzhong,PEI Xu,et al. Type synthesis principle and practice of flexure systems in the framework of screw theory part I:General methodology[C]//2010 ASME International Design Engineering Conference,Aug. 15-18,2010,Montreal,Canada. New York:ASME,2010:DETC2010-28783. [27] KONG Xianwen,GOSSELIN C M. Type synthesis of parallel mechanisms[M]. Springer,2007. [28] YUE Yi,GAO Feng,GE Hao. The reducible design of 6-DOF parallel micro manipulator based on screw theory[C]//13th World Congress in Mechanism and Machine Science,Guanajuato,México,19-25 June,2011:117-185. |