• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (2): 220-232.doi: 10.3901/JME.2020.02.220

• 交叉与前沿 • 上一篇    

扫码分享

周期式退火炉作批处理机的可重入批离散机流水车间调度

顾涛, 李苏建, 林莹璐, 吴秀丽   

  1. 北京科技大学机械工程学院 北京 100083
  • 收稿日期:2019-02-22 修回日期:2019-12-20 出版日期:2020-01-20 发布日期:2020-03-11
  • 作者简介:顾涛,男,1985年出生,博士研究生。主要研究方向为供应链计划优化、备件库存优化、生产调度优化等。E-mail:babygo1003@163.com

Research on the Re-entrant Batch Discrete Flow Shop Scheduling for Periodic Annealing Furnace as Batch Processor

GU Tao, LI Sujian, LIN Yinglu, WU Xiuli   

  1. School of Mechanical Engineering, University of Science and Technology, Beijing 100083
  • Received:2019-02-22 Revised:2019-12-20 Online:2020-01-20 Published:2020-03-11

摘要: 针对无缝钢管冷拔生产中的周期式退火炉作批处理机的可重入批离散机流水车间调度问题,建立以总工件完工时间与批处理机总能源消耗最小化的双目标优化调度模型,设计包括多目标粒子群算法、快速非支配等级排序、拥挤度比较以及变异进化操作的多目标粒子群算法,该算法采用非支配等级排序与拥挤度比较进行最优粒子的选择策略和算法前期与后期变异相结合使用策略。试验结果表明,与带变异进化操作的多目标粒子群算法和非支配排序粒子群算法相比,该算法在两个目标函数上都找到更优的最小值,其结果平均水平更靠近Pareto解集的前沿,有效提高了算法的优化求解能力。通过Pareto解的方式该算法可得到一组综合权衡了完工时间和退火炉能源消耗两个指标的Pareto解集,能提供多种可选的调度方案,当生产时间充足,可尽量选取退火炉能源消耗较低的方案,当企业订单繁多追求生产效率时,可尽量选取完工时间较小的方案,有效地解决了此类实际问题。

关键词: 无缝钢管, 冷拔, 生产计划, 可重入生产, 周期式退火炉, Pareto

Abstract: Aiming at the flow shop scheduling problem of reentrant batch discrete machines with periodic annealing furnace as batch processor in seamless steel tube cold drawing production, a bi-objective optimal scheduling model is established, which minimizes the total work completion time and the total energy consumption of batch machines. A multi-objective particle swarm optimization algorithm, fast non-dominant ranking, congestion comparison and particle mutation operation algorithm are designed. In this algorithm, non-dominant ranking and congestion comparison are used to select the optimal particle and the combination of early and late mutation is used. The experimental results show that, compared with the Variation-Multi-Objective Particle Swarm Optimization algorithms and Non-Dominated Sorting Particle Swarm Optimization algorithms, the algorithm finds a better minimum on both objective functions, and the average level of the results is closer to the front of Pareto solution set, which effectively improves the optimization ability of the algorithm. Through Pareto solution, the algorithm can get a set of Pareto solution which comprehensively weighs the completion time and energy consumption of annealing furnace. It can provide a variety of alternative scheduling schemes. When the production time is sufficient, the scheme with lower energy consumption of annealing furnace can be selected as far as possible. When the enterprise has many orders to pursue production efficiency, the scheme with smaller completion time can be selected as far as possible to effectively solve the problem. Such practical problems have been solved.

Key words: seamless steel tube, cold-drawing, production scheduling, re-entrant lines, periodic annealing furnace, Pareto

中图分类号: