• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (24): 69-76.doi: 10.3901/JME.2018.24.069

• 材料科学与工程 • 上一篇    下一篇

钢管控制冷却物理模拟平台的建立及传热边界条件的确定

王晓东1,2, 郭锋1, 王宝峰3, 包喜荣3   

  1. 1. 内蒙古工业大学材料科学与工程学院 呼和浩特 010051;
    2. 内蒙古科技大学矿业与煤炭学院 包头 014010;
    3. 内蒙古科技大学材料与冶金学院 包头 014010
  • 收稿日期:2018-01-30 修回日期:2018-06-12 出版日期:2018-12-20 发布日期:2018-12-20
  • 通讯作者: 郭锋(通信作者),男,1963年出生,博士,教授,博士研究生导师。主要研究方向为金属结构材料及其稀土合金化和材料表面技术。E-mail:guofengnmg@sina.com
  • 作者简介:王晓东,男,1978年出生,博士研究生,副教授。主要研究方向为钢管组织性能控制。E-mail:wxd6595111@126.com
  • 基金资助:
    国家自然科学基金(51461034)、内蒙古自治区自然科学基金(2014MS0532)和内蒙古科技大学创新基金(2014QDL036)资助项目。

Establishment of a Physical Simulation Platform for Controlled Cooling of Steel Tubes and Determination of Heat Transfer Boundary Conditions

WANG Xiaodong1,2, GUO Feng1, WANG Baofeng3, BAO Xirong3   

  1. 1. School of Materials Science & Engineering, Inner Mongolia University of Technology, Hohhot 010051;
    2. School of Mining & Coal, Inner Mongolia University of Science & Technology, Baotou 014010;
    3. School of Material & Metallurgy, Inner Mongolia University of Science & Technology, Baotou 014010
  • Received:2018-01-30 Revised:2018-06-12 Online:2018-12-20 Published:2018-12-20

摘要: 目前关于钢管控制冷却的研究没有专门针对其关键问题传热边界条件进行深入分析。为此基于钢管热机械控制工艺实际,建立钢管控制冷却全尺寸物理模拟平台,测定28CrMoVNiRE油井管在水量11.4 L/min、气压0.2 MPa,水量11.4 L/min、气压0.3 MPa和水量18.0 L/min、气压0.3 MPa三种不同气雾控制冷却条件下的冷却曲线,通过反传热法计算钢管表面的热流密度和换热系数,分析钢管在气雾控制冷却条件下的传热边界条件。结果表明,影响钢管气雾控制冷却传热的关键因素是气水混合比,其最佳值为6~7;换热系数随温差ΔT的下降依次经历高温慢速增加阶段、中温稳定阶段和低温快速增加阶段。采用有限元正算法,验证了反传热计算结果的可靠性。钢管控制冷却后细化的微观组织验证了气雾控制冷却物理模拟技术的可行性。钢管控制冷却传热边界条件的确定对于实现钢管在线气雾控制冷却工艺具有重要的指导意义。

关键词: 反传热法, 界面换热, 气雾冷却, 热机械控制工艺, 无缝钢管

Abstract: At present, heat transfer boundary conditions, the key issues in researches on controlled cooling of steel tubes, have not been specifically analyzed. Therefore, a full size physical simulation platform for controlled cooling of steel tubes is set up based on the actual situation of thermo mechanical control process (TMCP). The cooling curves of 28CrMoVNiRE oil well tubes are measured, the heat fluxes and the heat transfer coefficients are calculated by inverse heat conduction method and the heat transfer boundary conditions are analyzed under three different air mist spray controlled cooling conditions, which are 1) water flow of 11.4 L/min, air pressure of 0.2 MPa, 2) water flow of 11.4 L/min, air pressure of 0.3 MPa and 3) water flow of 18.0 L/min and air pressure of 0.3 MPa. The results show that the key factor affecting the heat transfer of steel tubes in air mist spray controlled cooling is the mixture ratio of air and water, and its optimal value is between 6 and 7. With the decrease of temperature difference(ΔT), the heat transfer coefficients go through three different stages in turn, namely the slow increasing stage at higher temperatures, the stable stage at middle temperatures and the rapid increasing stage at lower temperatures. The reliability of inverse heat conduction calculated results is verified by the finite element method. The feasibility of air mist spray controlled cooling physical simulation technology is validated by the fine microstructures of steel tubes after controlled cooling. Determination of heat transfer boundary conditions has important guiding significance for realizing the online air mist spray controlled cooling process of steel tubes.

Key words: air mist spray cooling, interfacial heat transfer, inverse heat conduction method, seamless steel tubes, thermo mechanical control process

中图分类号: