[1] HONDIUS H. The development of low-flow trams[J]. Journal of Advanced Transportation, 1993, 27(1):79-102. [2] 陆云. 现代有轨电车工程[M]. 成都:西南交通大学出版社, 2015. LU Yun. Modern tram engineering[M]. Chengdu:Southwest Jiaotong University Press, 2015. [3] 李明. 城市轻轨车辆选型及动力学性能研究[D]. 成都:西南交通大学, 2004. LI Ming. Lectotype of light rail vehicles and reasearch on dynamic performance[D]. Chengdu:Southwest Jiaotong University, 2004. [4] 王欢. 100%低地板轻轨车辆结构型式与导向机理研究[D]. 成都:西南交通大学, 2008 WANG Huan. Research of structure style and steering principle of 100% low floor light rail vehicle[D]. Chengdu:Southwest Jiaotong University, 2008. [5] 姜宇飞,谭明敏,王力军. 储能式低地板有轨电车防折弯系统分析[J]. 技术与市场, 2015(11):26-27. JIANG Yufei, TAN Mingmin, WANG Lijun. Anti-kink system of energy storage modern tram[J]. Technology and Market, 2015(11):26-27. [6] 黄江伟,雷新红,张登科,等. 储能式现代有轨电车防折弯系统试验研究[J]. 技术与市场, 2015(5):26-27. HUANG Jiangwei, LEI Xinhong, ZHANG Dengke, et al. Experimental study on anti-king system of energy storage modern tram[J]. Technology and Market, 2015(5):26-27. [7] LI Jing, ZHU Xianliang, ROBINEAU C. Non-linear stiffness analyzing of a hydraulic assisted turning system in low-floor trams[C]//International Conference on Fluid Power & Mechatronics. August 5, 2015, Harbin, Heilongjiang, China. Beijing China:FPTCI, CMES, 2015:518-524. [8] 李晶,朱先亮,任利惠. 低地板轻轨车液压防折弯系统阻尼特性分析[J]. 同济大学学报, 2017, 36(7):1044-1049. LI Jing, ZHU Xianliang, REN Lihui. Analysis of damping characteristics of hydraulic anti-kink system in low-floor trams[J]. Journal of Tongji University, 2017, 36(7):1044-1049. [9] 张徐. 四模块100%低地板有轨电车小曲线通过性能研究[D]. 成都:西南交通大学, 2016. ZHANG Xu. Study on small curve performance of four modules 100% low-floor trams[J]. Chegndu:Southwest Jiaotong University, 2016. [10] 吕凤梅,赵建秋,闫晓明,等. 100%低地板现代城市有轨电车限界和小曲线通过能力分析[J]. 铁道车辆, 2013, 51(9):5-7. LÜ Fengmei, ZHAO Jianqiu, YAN Xiaoming, et al. Gauge for 100% low floor modern urban tram and analysis of the small curve negotiation capability[J]. Rolling Stock, 2013, 51(9):5-7. [11] DUYM S, STIENS R, REYBROUCK K. Evaluation of shock absorber models[J]. Vehicle System Dynamics, 1997, 27(2):109127. [12] 吕振华,李世民. 筒式液阻减振器动态特性模拟分析技术的发展[J]. 清华大学学报, 2002, 42(11):1532-1536. LÜ Zhenhua, LI Shimin. Simulation techniques for nonlinear dynamic characteristics of telescopic hydraulic dampers[J]. Journal of Tsinghua University, 2002, 42(11):1532-1536. [13] 王欢,田合强,戴焕云. 独立车轮动力转向架纵向耦合导向机理[J]. 中国铁道科学, 2010, 31(4):63-67. WANG Huan, TIAN Heqiang, DAI Huanyun. The Principle of the longitudinal coupled creep steering for the independently wheel power bogie[J]. China Railway Science, 2010, 31(4):63-67. [14] 许明春,曾京. 纵向耦合独立旋转车轮转向架导向机理[J]. 交通运输工程学报, 2011, 11(1):43-50. XU Mingchun, ZENG Jing. Guiding mechanism of longitudinal coupling bogie with independently rotating wheels[J]. China Railway Science, 2011, 11(1):43-50. [15] 中华人民共和国国家标准局,铁道部标准计量研究所. GB/T 5599-1985铁道车辆动力学性能评定和试验鉴定规范[S]. 北京:中国标准出版社, 1985. National Bureau of Standards, Institute of Standard Metrology. GB/T 5599-1985 Railway vehicles-S pecification for evaluation the dynamic performance and accreditation test[S]. Beijing:China Standard Press, 1985. |