• CN:11-2187/TH
  • ISSN:0577-6686

›› 2004, Vol. 40 ›› Issue (1): 151-154.

• 论文 • 上一篇    下一篇

扫码分享

基于12维统计矢量的GMAW焊接过程监测模糊神经网络系统

武传松;胡庆贤;孙俊生;Polte T.;Rehfeldt D.   

  1. 山东大学材料连接技术研究所;德国汉诺威大学
  • 发布日期:2004-01-15

12-D STATISTICAL VECTOR BASED NEURO-FUZZY SYSTEM FOR GMAW PROCESS MONITORING

Wu Chuansong;Hu Qingxian;Sun Junsheng;Polte T.;Rehfeldt D.   

  1. Shandong University Hannover University, Germany
  • Published:2004-01-15

摘要: 将熔化极气体保护焊(GMAW)焊接电参数概率密度分布(PDD)和时间频数分布(CFD)数值信息进行进一步的处理,用其平均值、方差和标准方差等统计参数,构成12维矢量S12,描述不同工艺条件下的GMAW焊接过程。综合神经网络和模糊技术的优点,建立了模糊神经网络系统FKCN,对8种工艺条件下24个GMAW焊接试验的识别成功率达到了100%。

关键词: 过程监测, 模糊神经网络, 熔化极气体保护焊(GMAW), 智能识别

Abstract: The test data of probability density distribution (PDD) and class frequency distribution (CFD) of electrical parameters in GMAW are further processed, and their statistical values of mean, variance and standard deviation are used to set up a 12-dimensional vector S12 for describing GMAW processes under different welding conditions. The merits of neural network and fuzzy logic technology are combined together to develop a neuro-fuzzy system FKCN, which can automatically recognize 24 test cases under 8 kinds of welding conditions with a correct rate of 100%.

Key words: GMAW, Intelligent recognition, Neuro-fuzzy system, Process monitoring

中图分类号: