• CN:11-2187/TH
  • ISSN:0577-6686

›› 2014, Vol. 50 ›› Issue (3): 64-70.

• 论文 • 上一篇    下一篇

扫码分享

自适应总体平均经验模式分解及其在行星齿轮箱故障检测中的应用

雷亚国;孔德同;李乃鹏;林京   

  1. 西安交通大学机械制造系统工程国家重点实验室;华电电力科学研究院
  • 发布日期:2014-02-05

Adaptive Ensemble Empirical Mode Decomposition and Its Application to Fault Detection of Planetary Gearboxes

LEI Yaguo;KONG Detong; LI Naipeng; LIN Jing   

  1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University Huadian Electric Power Research Institute
  • Published:2014-02-05

摘要: 总体平均经验模式分解(Ensemble empirical mode decomposition, EEMD)是针对经验模式分解(Empirical mode decomposition, EMD)存在的模式混淆问题而提出的,对分解信号加入高斯白噪声,改善信号的极值点分布,经过多次平均,从而达到减小模式混淆的目的。然而,EEMD分解效果取决于添加噪声的幅值、筛选次数等参数的选择。目前的研究通常是人为选择这些参数,具有较大的盲目性和主观性,因此分解结果差强人意。为了解决以上问题,提出一种新的自适应总体平均经验模式分解方法。该方法基于EMD的滤波特性,在提取本征模式分量(Intrinsic mode function, IMF)的过程中自适应改变加入噪声的幅值,并对每个IMF自动选择不同的筛选次数,可以更好地削弱模式混淆。通过仿真试验验证了该方法的有效性,并将该方法应用于行星轮故障检测中,取得了比EEMD更好的故障检测结果。

关键词: 自适应总体平均经验模式分解;行星齿轮箱;故障检测

Abstract: Empirical mode decomposition (EMD) has the shortcoming of mode mixing in decomposing signals. To overcome this shortcoming, ensemble empirical mode decomposition (EEMD) is proposed accordingly. EEMD can reduce the mode mixing to some extent. The performance of EEMD, however, depends on the parameters adopted in the EEMD algorithm. In current studies on EEMD, the parameters are generally selected artificially and subjectively. To solve the problem, a new adaptive ensemble empirical mode decomposition method is proposed. In the method, the sifting number is adaptively selected and the amplitude of the added noise changes with the signal frequency during the decomposition process. Both simulations and a case of fault detection of a planetary gear demonstrate that the proposed method obtains the improved results compared with the original EEMD.

Key words: adaptive ensemble empirical mode decomposition;planetary gearboxes;fault detection

中图分类号: