• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 292-301.doi: 10.3901/JME.2025.09.292

• 机器人及机构学 • 上一篇    

扫码分享

5-PUS-RPUR并联机构精度设计与运动学标定

孙鹏1,2, 高玉君1,2, 冯邵江1,2, 叶家铭1,2, 李研彪1,2   

  1. 1. 浙江工业大学机械工程学院 杭州 310023;
    2. 浙江工业大学特种装备制造与先进加工技术教育部/浙江省重点实验室 杭州 310023
  • 收稿日期:2024-05-06 修回日期:2024-09-20 发布日期:2025-06-12
  • 通讯作者: 李研彪,男,1978年出生,博士,教授,博士研究生导师。主要研究方向为机器人理论及其应用。E-mail:lybrory@zjut.edu.cn E-mail:lybrory@zjut.edu.cn
  • 作者简介:孙鹏,男,1991年出生,博士,讲师。主要研究方向为机构学理论及其应用。E-mail:sunpeng@zjut.edu.cn
  • 基金资助:
    国家自然科学基金(U21A20122,52105037)和浙江省自然科学基金(LD24E050003,LTGY24E050002)资助项目。

Precision Design and Kinematics Calibration of 5-PUS-RPUR Parallel Mechanism

SUN Peng1,2, GAO Yujun1,2, FENG Shaojiang1,2, YE Jiaming1,2, LI Yanbiao1,2   

  1. 1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023;
    2. Key Laboratory of Special Purpose Equipment and Advanced Processing Technology of Ministry of Education and Zhejiang Province, Zhejiang University of Technology, Hangzhou 310023
  • Received:2024-05-06 Revised:2024-09-20 Published:2025-06-12

摘要: 5自由度并联机构因其结构复杂,制造和装配过程中存在大量的几何误差,严重影响运动精度。基于5-PUS-RPUR并联机构,通过精度设计和运动学标定提高机构末端执行器运动精度。首先建立综合考虑PUS支链虎克铰和球铰的误差映射模型,将其可补偿误差源和不可补偿误差源进行分离,随后采用量子粒子群优化算法对不可补偿误差源进行公差分配,通过蒙特卡洛模拟法对公差范围结果进行验证,并通过运动学标定修正可补偿误差来提高并联机构的运动精度。实验结果表明,并联平台运动到16组测点的误差平均值由标定前的:x=5.256 mm、y=3.906 mm、z=14.337 mm、α= 6.887°、β= 2.817°,降低为标定后的:x=2.681 mm、y=1.981 mm、z=8.250 mm、α=4.079°、β=1.280°,该并联机构沿各自由度的运动精度都得到明显提升,验证了该精度设计与运动学标定算法的有效性。

关键词: 5-PUS-RPUR并联机构, 误差分析, 精度设计, 运动学标定

Abstract: Because of the complex structure of 5-DOF parallel mechanism, there are a lot of geometric errors in the manufacturing and assembly process, which seriously affect the motion accuracy. Based on the 5-PUS-RPUR parallel mechanism as the research object, the precision design and kinematic calibration are used to improve the motion accuracy of the end-effector. Firstly, an error mapping model considering PUS branched-chain Hooke joints and ball joints is established, and compensable error sources and uncompensable error sources are separated. Then quantum particle swarm optimization algorithm is used to assign the uncompensable error sources, and the tolerance range results are verified by Monte Carlo simulation method, and the kinematic calibration correction can compensate the error to improve the kinematic precision of the parallel mechanism. The experimental results show that the average error of the parallel platform moving to the 16 groups of measuring points is reduced from x=5.256mm, y=3.906mm, z=14.337mm, α= 6.887°, β= 2.817° before calibration to: x=2.681 mm, y=1.981 mm, z=8.250 mm, α=4.079°, β=1.280°, the motion accuracy of the parallel mechanism along each degree of freedom has been significantly improved, which verifies the validity of the precision design and kinematics calibration algorithm.

Key words: 5-PUS-RPUR parallel mechanism, error analysis, precision design, kinematic calibration

中图分类号: