机械工程学报 ›› 2025, Vol. 61 ›› Issue (8): 47-74.doi: 10.3901/JME.2025.08.047
• 材料科学与工程 • 上一篇
廖鼎1, 朱顺鹏1,2,3, 牛晓鹏1, 何金超1, 王清远2,3
收稿日期:
2024-04-03
修回日期:
2024-11-25
发布日期:
2025-05-10
作者简介:
廖鼎,男,1994年出生,博士研究生。主要研究方向为主要研究方向为概率疲劳建模与结构完整性评估。E-mail:liaoding.cn@gmail.com;朱顺鹏(通信作者),男,1983年出生,博士,教授,博士研究生导师。主要研究方向为结构强度与疲劳可靠性分析、损伤容限设计与寿命预测、人工智能与健康评估。E-mail:zspeng2007@uestc.edu.cn;王清远,男,1965 年出生,博士,教授,博士研究生导师。主要研究方向为新型材料与结构力学问题、超长寿命疲劳与可靠性、实验力学等。E-mail:wangqy@scu.edu.cn
基金资助:
LIAO Ding1, ZHU Shunpeng1,2,3, NIU Xiaopeng1, HE Jinchao1, WANG Qingyuan2,3
Received:
2024-04-03
Revised:
2024-11-25
Published:
2025-05-10
摘要: 疲劳是循环载荷作用下机械结构最常见的失效模式之一。受源自材料、载荷、尺寸等方面的多源不确定性因素影响,疲劳损伤演化往往呈现不容忽视的分散特征。尤其,当计算对输入的细微变化极其敏感时,参数在合理范围波动所导致的疲劳寿命差异可达千倍。此时,传统确定性模型耦合安全/分散系数的设计准则不再适用,亟待发展可有效量化描述疲劳行为分散性的概率模型,以面向现代结构工程领域基于可靠性的最优化设计发展趋势,满足设计冗余度检测以及检修周期、维护间隔及除役条件确定等需求。为促进概率疲劳研究发展、凸显其在疲劳可靠性设计中的重要性,概述了概率疲劳研究背景、疲劳分散性来源、疲劳行为分散特征、疲劳可靠性等基本要素及该方向研究前沿,最后结合全文内容作出总结。
中图分类号:
廖鼎, 朱顺鹏, 牛晓鹏, 何金超, 王清远. 机械结构概率疲劳研究:现状及展望[J]. 机械工程学报, 2025, 61(8): 47-74.
LIAO Ding, ZHU Shunpeng, NIU Xiaopeng, HE Jinchao, WANG Qingyuan. Probabilistic Fatigue Research of Mechanical Structures: State-of-the-Art and Future Trends[J]. Journal of Mechanical Engineering, 2025, 61(8): 47-74.
[1] 赵永翔. 应变疲劳可靠性分析的现状及展望[J]. 机械工程学报,2001,37(11):1-6. ZHAO Yongxiang. On the strain-based fatigue reliability analysis[J]. Journal of Mechanical Engineering,2001,37(11):1-6. [2] 闫楚良. 中国飞机结构寿命可靠性评定技术的发展与展望[J]. 航空学报,2022,43(10):527869. YAN Chuliang. Development and prospect of aircraft structural life reliability assessment technology in China[J]. Acta Aeronautica et Astronautica Sinica,2022,43(10):527869. [3] 王彬文,陈先民,苏运来,等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报,2021,42(5):524651. WANG Binwen,CHEN Xianmin,SU Yunlai,et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica,2021,42(5):524651. [4] 朱顺鹏. 高温复杂结构的混合概率故障物理建模与疲劳寿命预测[D]. 成都:电子科技大学,2011. ZHU Shunpeng. Research on hybrid probabilistic physics of failure modeling and fatigue life estimation of high-temperature structures[D]. Chengdu:University of Electronic Science and Technology of China,2011. [5] 李舜酩. 机械疲劳与可靠性设计[M]. 北京:科学出版社,2006. LI Shunming. Mechanical fatigue and reliability design[M]. Beijing:Science Press,2006. [6] 杨新华,陈传尧. 疲劳与断裂[M]. 2版. 武汉:华中科技大学出版社,2018. YANG Xinhua,CHEN Chuanyao. Fatigue and fracture[M]. 2nd ed. Wuhan:Huazhong University of Science and Technology Press,2018. [7] D’ANGELO L,NUSSBAUMER A. New framework for calibration of partial safety factors for fatigue design[J]. Journal of Constructional Steel Research,2017,139:466-472. [8] 林建鸿,王彬文. 飞机疲劳失效适航规章演变历程回顾[J]. 航空科学技术,2022,33(3):39-51. LIN Jianhong,WANG Binwen. Evolution history of airworthiness regulations for aircraft structural fatigue designs[J]. Aeronautical Science & Technology,2022,33(3):39-51. [9] 徐楠. 42CrMo钢疲劳可靠性分析与裂纹萌生微观机理研究[D]. 济南:山东大学,2006. XU Nan. Fatigue reliability analysis and crack initiation micromechanism for 42CrMo steel[D]. Jinan:Shandong University,2006. [10] 高镇同,熊峻江. 疲劳/断裂可靠性研究现状与展望[J]. 机械强度,1995,17(3):61-80. GAO Zhentong,XIONG Junjiang. The present situation and prospects for the fatigue/fracture reliability study[J]. Journal of Mechanical Strength,1995,17(3):61-80. [11] 赵丙峰,廖鼎,朱顺鹏,等. 机械结构概率疲劳寿命预测研究进展[J]. 机械工程学报,2021,57(16):173-184,197. ZHAO Bingfeng,LIAO Ding,ZHU Shunpeng,et al. Probabilistic fatigue life prediction of mechanical structures:State of the art[J]. Journal of Mechanical Engineering,2021,57(16):173-184,197. [12] GRACIO J J,BARLAT F,RAUCH E F,et al. A review of the relationship between microstructural features and the stress–strain behavior of metals[J]. Materialwissenschaft und Werkstofftechnik,2005,36(10):572-577. [13] 高镇同. 疲劳应用统计学[M]. 北京:国防工业出版社,1986. GAO Zhentong. Applied statistics in fatigue[M]. Beijing:National Defense Industry Press,1986. [14] FREUDENTHAL A M,GUMBEL E J. Physical and statistical aspects of fatigue[J]. Advances in Applied Mechanics,1956,4:117-158. [15] SCHIJVE J. A normal distribution or a Weibull distribution for fatigue lives[J]. Fatigue & Fracture of Engineering Materials & Structures,1993,16(8):851-859. [16] GRELL W A,LAZ P J. Probabilistic fatigue life prediction using AFGROW and accounting for material variability[J]. International Journal of Fatigue,2010,32(7):1042-1049. [17] KIM J H,CHAU-DINH T,ZI G,et al. Probabilistic fatigue integrity assessment in multiple crack growth analysis associated with equivalent initial flaw and material variability[J]. Engineering Fracture Mechanics,2016,156:182-196. [18] 高阳,杨昌军,白广忱,等. 涡轮盘低循环疲劳可靠性设计方法[J]. 航空发动机,2011,37(1):4-8. GAO Yang,YANG Changjun,BAI Guangchen,et al. Reliability design of turbine disk low cycle fatigue[J]. Aeroengine,2011,37(1):4-8. [19] ZHU S P,FOLETTI S,BERETTA S. Probabilistic framework for multiaxial LCF assessment under material variability[J]. International Journal of Fatigue,2017,103:371-385. [20] ZHU S P,LIU Q,ZHOU J,et al. Fatigue reliability assessment of turbine discs under multi-source uncertainties[J]. Fatigue & Fracture of Engineering Materials & Structures,2018,41(6):1291-1305. [21] LIU R,CHEN P W,ZHANG X T,et al. Non-shock ignition probability of octahydro-1,3,5,7-tetranitro- tetrazocine-based polymer bonded explosives based on microcrack stochastic distribution[J]. Propellants Explosives,Pyrotechnics,2020,45(4):568-580. [22] SCHIJVE J. Fatigue of structures and materials[M]. 2nd ed. Delft:Springer Netherlands,2009. [23] 《中国航空材料手册》编辑委员会. 中国航空材料手册第2卷变形高温合金铸造高温合金[M]. 2版. 北京:中国标准出版社,2002. China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook Vol. 2: Deformation superalloy & casting superalloy[M]. 2nd ed. Beijing:China Standards Press,2002. [24] LI D,HU D Y,WANG R Q,et al. A non-local approach for probabilistic assessment of LCF life based on optimized effective-damage-parameter[J]. Engineering Fracture Mechanics,2018,199:188-200. [25] MÄDE L,SCHMITZ S,GOTTSCHALK H,et al. Combined notch and size effect modeling in a local probabilistic approach for LCF[J]. Computational Materials Science,2018,142:377-388. [26] SCHMITZ S,SEIBEL T,BECK T,et al. A probabilistic model for LCF[J]. Computational Materials Science,2013,79:584-590. [27] MUÑIZ-CALVENTE M,FERNÁNDEZ-CANTELI A C,SHLYANNIKOV V,et al. Probabilistic Weibull methodology for fracture prediction of brittle and ductile materials[J]. Applied Mechanics and Materials,2015,784:443-451. [28] LIAO D,ZHU S P,KESHTEGAR B,et al. Probabilistic framework for fatigue life assessment of notched components under size effects[J]. International Journal of Mechanical Sciences,2020,181:105685. [29] JIMENEZ-MARTINEZ M. Manufacturing effects on fatigue strength[J]. Engineering Failure Analysis,2020,108:104339. [30] JIA M H,WANG C L,REN B. Manufacturing error effects on mechanical properties and dynamic characteristics of rotor parts under high acceleration[J]. Chinese Journal of Mechanical Engineering,2017,30:920-932. [31] LI G C,WANG Q,ZHONG G Y,et al. Influence of assembly tolerance on fatigue reliability life of aircraft structures[J]. Aeronautical Science & Technology,2022,33(3):106-110. [32] 李伟,谭豫之. 机械制造工程学[M]. 2版. 北京:机械工业出版社,2017. LI Wei,TAN Yuzhi. Mechanical manufacturing engineering[M]. 2nd ed. Beijing:China Machine Press,2017. [33] 杨强,闻聪聪,孙志礼,等. 航空电连接器接触件疲劳寿命的可靠性分析[J]. 航空学报,2018,39(10):222123. YANG Qiang,WEN Congcong,SUN Zhili,et al. Reliability analysis of fatigue life of aviation electrical connector contact parts[J]. Acta Aeronautica et Astronautica Sinica,2018,39(10):222123. [34] 许金锦. 水下生产系统脐带缆抗疲劳优化设计及疲劳可靠性分析[D]. 大连:大连理工大学,2019. XU Jinjin. The fatigue optimization design and reliability analysis of umbilical in subsea production system[D]. Dalian:Dalian University of Technology,2019. [35] NIU X P,WANG R Z,LIAO D,et al. Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks[J]. International Journal of Fatigue,2021,142:105912. [36] MAO J X,HU D Y,LI D,et al. Novel adaptive surrogate model based on LRPIM for probabilistic analysis of turbine disc[J]. Aerospace Science and Technology,2017,70:76-87. [37] WANG R Q,LIU X,HU D Y,et al. Zone-based reliability analysis on fatigue life of GH720Li turbine disk concerning uncertainty quantification[J]. Aerospace Science and Technology,2017,70:300-309. [38] ZHU S P,AI Y,LIAO D,et al. Recent advances on size effect in metal fatigue under defects:A review[J]. International Journal of Fracture,2021,234:21-43. [39] SINGH K,SADEGHI F,CORRENS M,et al. A microstructure based approach to model effects of surface roughness on tensile fatigue[J]. International Journal of Fatigue,2019,129:105229. [40] MCKELVEY S A,FATEMI A. Surface finish effect on fatigue behavior of forged steel[J]. International Journal of Fatigue,2012,36(1):130-145. [41] SURARATCHAI M,LIMIDO J,MABRU C,et al. Modelling the influence of machined surface roughness on the fatigue life of aluminium alloy[J]. International Journal of Fatigue,2008,32(12):2119-2126. [42] HUANG J C,MISCLES E,MELLOR T,et al. Effects of size and surface treatment on fatigue life of fused filament fabrication manufactured acrylonitrile butadiene styrene parts[J]. Journal of Manufacturing Science and Engineering,2021,143(8):084502. [43] KANNAN S,SRINIVASAN S M. Influence of manufacturing processes and their sequence of execution on fatigue life of axle house tubes in automobiles[J]. Engineering Failure Analysis,2013,34:79-92. [44] GAO Y K,TAO X F. A review on the influences of high speed impact surface treatments on mechanical properties and microstructures of metallic materials[J]. Explosion and Shock Waves,2021,41(4):041401. [45] YANG X P,LIU C R,GRANDT A F. An experimental study on fatigue life variance,residual stress variance,and their correlation of face-turned and ground Ti-6Al-4V samples[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2002,124(4):809-819. [46] CHEN J B,FANG Q H,ZHANG L C. Investigate on distribution and scatter of surface residual stress in ultra-high speed grinding[J]. International Journal of Advanced Manufacturing Technology,2014,75:615-627. [47] LIU C R,CHOI Y. Rolling contact fatigue life model incorporating residual stress scatter[J]. International Journal of Mechanical Sciences,2008,50(12):1572-1577. [48] CUI K P,YE Y N,SUN T L,et al. Effect of structure heterogeneity on mechanical performance of physical polyampholytes hydrogels[J]. Macromolecules,2019,52(19):7369-7378. [49] JIANG R B,MOSTAFAEI A,WU Z H,et al. Effect of heat treatment on microstructural evolution and hardness homogeneity in laser powder bed fusion of alloy 718[J]. Additive Manufacturing,2020,35:101282. [50] MAGIN W. Untersuchung des geometrischen Grösseneinflusses bei Umlaufbiegebeanspruchung unter besonderer Berücksichtigung technologischer Einflüsse[D]. Darmstadt:Technische Hochschule Darmstadt,1981. MAGIN W. Investigation of the geometrical size effect under rotating bending stress with special consideration to technological influences[D]. Darmstadt:Technical University of Darmstadt,1981. [51] SHIRANI M,HÄRKEGÅRD G. Large scale axial fatigue testing of ductile cast iron for heavy section wind turbine components[J]. Engineering Failure Analysis,2011,18(6):1496-1510. [52] BANAVASI S M,RAVISHANKAR K S,NAIK P S. Effect of machine scatter on the rotating bending fatigue life of materials[J]. Journal of the Mechanical Behavior of Materials,2018,27(3-4):20180021. [53] FIRESTONE J. Wind energy:A human challenge[J]. Science,2019,366(6470):1206. [54] TOFT H S,SVENNINGSEN L,SØRENSEN J D,et al. Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads[J]. Renewable Energy,2016,90:352-361. [55] LIAO D,ZHU S P,CORREIA J A F D O,et al. Fatigue reliability of wind turbines: historical perspectives,recent developments and future prospects[J]. Renewable Energy,2022,200:724-742. [56] ROCHER B,SCHOEFS F,FRANÇOIS M,et al. A two-scale probabilistic time-dependent fatigue model for offshore steel wind turbines[J]. International Journal of Fatigue,2020,136:105620. [57] ZHU S P,YU Z Y,CORREIA J A F D O,et al. Evaluation and comparison of critical plane criteria for multiaxial fatigue analysis of ductile and brittle materials[J]. International Journal of Fatigue,2018,112:279-288. [58] ZHU S P,LEI Q,WANG Q Y. Mean stress and ratcheting corrections in fatigue life prediction of metals[J]. Fatigue and Fracture of Engineering Materials and Structures,2017,40(9):1343-1354. [59] GUENNEC B,UENO A,SAKAI T,et al. Effect of the loading frequency on fatigue properties of JIS S15C low carbon steel and some discussions based on micro-plasticity behavior[J]. International Journal of Fatigue,2014,66:29-38. [60] 姚卫星. 结构疲劳寿命分析[M]. 北京:科学出版社,2019. YAO Weixing. Fatigue life estimation of structures[M]. Beijing:Science Press,2019. [61] 施惠基,马显锋,于涛. 高温结构材料的蠕变和疲劳研究的一些新进展[J]. 固体力学学报,2010,61(6):696-715. SHI Huiji,MA Xianfeng,YU Tao. Some new progresses on the research of creep and fatigue behaviours of high temperature structural materials[J]. Chinese Journal of Solid Mechanics,2010,61(6):696-715. [62] 轩福贞,朱明亮,王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报,2021,57(6):26-51. XUAN Fuzhen,ZHU Mingliang,WANG Guobiao. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering,2021,57(6):26-51. [63] LIU D,LIU J,WU S C,et al. Corrosion fatigue-cracking behaviors of low alloy steels in seawater for offshore engineering structures[J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,2022,53(7):2369-2382. [64] 范志超,陈学冬,蒋家羚. 16MnR钢循环蠕变–疲劳交互作用损伤力学模型[J]. 固体力学学报,2006,27(1):65-70. FAN Zhichao,CHEN Xuedong,JIANG Jialing. Cyclic creep and fatigue interaction CDM model of 16MnR steel[J]. Acta Mechanica Solida Sinica,2006,27(1):65-70. [65] 王润梓,廖鼎,张显程,等. 高温结构蠕变疲劳寿命设计方法:从材料到结构[J]. 机械工程学报,2021,57(16):66-86,105. WANG Runzi,LIAO Ding,ZHANG Xiancheng,et al. Creep-fatigue life design methods in high-temperature structures: from materials to components[J]. Journal of Mechanical Engineering,2021,57(16):66-86,105. [66] WANG R Z,ZHANG X C,GU H H,et al. Oxidation-involved life prediction and damage assessment under generalized creep-fatigue loading conditions based on engineering damage mechanics[J]. Journal of Materials Research and Technology,2023,23:114-130. [67] CLYDE M,GEORGE E I. Model uncertainty[J]. Statistical Science,2004,19(1):81-94. [68] SUNDARARAJAN C. Probabilistic fatigue analysis[M]// WIRSCHING P H. Probabilistic structural mechanics handbook,theory and industrial applications. Houston:Springer,1995:146-165. [69] ONTIVEROS V,CARTILLIER A,MODARRES M. An integrated methodology for assessing fire simulation code uncertainty[J]. Nuclear Science and Engineering,2010,166(3):179-201. [70] RILEY M E,GRANDHI R V. Quantification of model-form and predictive uncertainty for multi-physics simulation[J]. Computers and Structures,2011,89(11-12):1206-1213. [71] CAIRNS A J G,BLAKE D,DOWD K. A two-factor model for stochastic mortality with parameter uncertainty: Theory and calibration[J]. Journal of Risk and Insurance,2006,73(4):687-718. [72] 刘文杰. 考虑模型不确定性的多模型预测和量化方法研究[D]. 厦门:厦门大学,2018. LIU Wenjie. Research on multi-model prediction and quantification method considering model uncertainty[D]. Xiamen:Xiamen University,2018. [73] SKOULIDOU D,ROMÃO X D N. Uncertainty quantification of fragility and risk estimates due to seismic input variability and capacity model uncertainty[J]. Engineering Structures,2019,195:425-437. [74] ZIO E,APOSTOLAKIS G E. Two methods for the structured assessment of model uncertainty by experts in performance assessments of radioactive waste repositories[J]. Reliability Engineering and System Safety,1996,54(2-3):225-241. [75] WASSERMAN L. Bayesian model selection and model averaging[J]. Journal of Mathematical Psychology,2000,44(1):92-107. [76] BUBEL G M,MATTHEWSON M J. Optical fiber reliability implications of uncertainty in the fatigue crack growth model[J]. Optical Engineering,1991,30(6):737-745. [77] CUI Y X,LIN K S,CHEN Y X. A generalized model for static fatigue lifetime evaluation of optical fibers to reduce the model uncertainty[J]. Applied Mathematical Modelling,2020,88:731-742. [78] 王荣桥,刘飞,胡殿印,等. 基于贝叶斯理论的低循环疲劳寿命模型不确定性量化[J]. 航空学报,2017,38(9):244-253. WANG Rongqiao,LIU Fei,HU Dianyin,et al. Uncertainty quantification in low cycle fatigue life model based on Bayesian theory[J]. Acta Aeronautica et Astronautica Sinica,2017,38(9):244-253. [79] TERRAZAS V F,SEDEHI O,PAPADIMITRIOU C,et al. A Bayesian framework for calibration of multiaxial fatigue curves[J]. International Journal of Fatigue,2022,163:107105. [80] ZHU S P,HUANG H Z,ONTIVEROS V,et al. Probabilistic low cycle fatigue life prediction using an energy-based damage parameter and accounting for model uncertainty[J]. International Journal of Damage Mechanics,2012,21(8):1128-1153. [81] WANG M M,FENG S Z,INCECIK A,et al. Structural fatigue life prediction considering model uncertainties through a novel digital twin-driven approach[J]. Computer Methods in Applied Mechanics and Engineering,2022,391:114512. [82] SIMARD J M. Essentially all models are wrong,but some are useful[J]. Neurology,2015,85(3):210-211. [83] European Committee for Standardization. EN 13261:2020 Railway applications-wheelsets and bogies-axles- product requirements[S]. Brussels:CEN Press,2020. [84] MILELLA P P. Fatigue and Corrosion in Metals[M]. Berlin:Springer,2013. [85] American Society for Testing and Materials. ASTM E606/E606M-12 Standard test method for strain-controlled fatigue testing[S]. West Conshohocken:ASTM International,2012. [86] ZHANG Z F,LI L L,ZHANG Z J,et al. Twin boundary:Controllable interface to fatigue cracking[J]. Journal of Materials Science and Technology,2017,33(7):603-606. [87] STRZELECKI P,SEMPRUCH J. Experimental method for plotting S-N curve with a small number of specimens[J]. Polish Maritime Research,2016,23(4):129-137. [88] BUČAR T,NAGODE M,FAJDIGA M. A neural network approach to describing the scatter of S-N curves[J]. International Journal of Fatigue,2006,28(4):311-323. [89] GUIDA M,PENTA F. A Bayesian analysis of fatigue data[J]. Structural Safety,2010,32(1):64-76. [90] ZHAO Y X,YANG B,FENG M F,et al. Probabilistic fatigue S-N curves including the super-long life regime of a railway axle steel[J]. International Journal of Fatigue,2009,31(10):1550-1558. [91] 高阳,白广忱. 基于P-ε-N曲线整体推断的涡轮盘寿命可靠性分析[J]. 推进技术,2009,30(3):347-351. GAO Yang,BAI Guangchen. Estimation of LCF life for a turbine disk based on P-ε-N curves[J]. Journal of Propulsion Technology,2009,30(3):347-351. [92] CORREIA J A F D O,APETRE N,ARCARI A,et al. Generalized probabilistic model allowing for various fatigue damage variables[J]. International Journal of Fatigue,2017,100:187-194. [93] ZHU S P,LIU Q,LEI Q,et al. Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations[J]. International Journal of Damage Mechanics,2018,27(10):1569-1588. [ 94] 傅惠民,刘成瑞. ε-N曲线和P-ε-N曲线整体推断方法[J]. 航空动力学报,2006,21(6):957-961. FU Huimin,LIU Chengrui. Integral inference method for ε-N and P-ε-N curves[J]. Journal of Aerospace Power,2006,21(6):957-961. [95] 牟园伟,陆山. 轮盘低周疲劳概率寿命预估模型[J]. 推进技术,2012,33(2):288-292. MOU Yuanwei,LU Shan. Low cycle fatigue probabilistic life prediction models for fan disk[J]. Journal of Propulsion Technology,2012,33(2):288-292. [96] ZHOU Y J,TANG X Z. S-N curve modeling for finite life range under the assumption of linearly changing scatter[J]. SAE International Journal of Materials and Manufacturing,2014,7(2):454-464. [97] AIGNER R,POMBERGER S,LEITNER M,et al. On the statistical size effect of cast aluminium[J]. Materials,2019,12(10):1578-1586. [98] QIAN G A,LEI W S. A statistical model of fatigue failure incorporating effects of specimen size and load amplitude on fatigue life[J]. Philosophical Magazine,2019,99(17):2089-2125. [99] AI Y,ZHU S P,LIAO D,et al. Probabilistic modelling of notch fatigue and size effect of components using highly stressed volume approach[J]. International Journal of Fatigue,2019,127:110-119. [100] CASTILLO E,FERNÁNDEZ-CANTELI A C. A unified statistical methodology for modeling fatigue damage[M]. Netherlands:Springer,2009. |
[1] | 雷政, 姜鹏, 姚蕊, 王勇. FAST促动器可靠性增长[J]. 机械工程学报, 2025, 61(3): 251-258. |
[2] | 王凯, 范小宁, 余畅, 吕召国. 基于动态Kriging模型的起重机金属结构可靠性解耦优化方法[J]. 机械工程学报, 2025, 61(2): 384-394. |
[3] | 刘水清, 付锦园, 沈骁, 韩旭. 点胶机器人撞针磨损建模与不确定性分析[J]. 机械工程学报, 2024, 60(7): 34-44. |
[4] | 俞水, 吴晓, 郭鹏, 王志华. 基于首次穿越PDF自适应估计的时变可靠性分析方法[J]. 机械工程学报, 2024, 60(5): 264-275. |
[5] | 李莹, 张嘉方, 张钊墉, 王鑫丞, 张晋, 孔祥东. 斜盘式轴向柱塞泵柱塞颈部最小直径设计[J]. 机械工程学报, 2024, 60(4): 430-437. |
[6] | 蔡金虎, 黄静, 黄龙, 付志方, 吴宏宇, 尹来容. 动态载荷不确定条件下的周期性结构稳健拓扑优化[J]. 机械工程学报, 2024, 60(23): 304-319. |
[7] | 白鑫, 张鹏, 张哲峰, 谢里阳. 等效疲劳寿命及其在疲劳可靠性设计中的应用[J]. 机械工程学报, 2024, 60(22): 427-436. |
[8] | 王嘉, 姜露露, 陶友瑞, 韩旭. 交变载荷下基于电流信号的机电系统可靠性建模与评估[J]. 机械工程学报, 2024, 60(22): 437-446. |
[9] | 孟磊, 周平, 闫英, 郭东明. 基于不确定性分析的半球陀螺谐振子高性能制造[J]. 机械工程学报, 2024, 60(21): 254-262. |
[10] | 钱萍, 刘鑫雨, 陈文华, 王哲, 郭明达. 电连接器用聚氨酯胶密封件贮存可靠性建模[J]. 机械工程学报, 2024, 60(20): 361-371. |
[11] | 韦新鹏, 姚中洋, 宝文礼, 张哲, 姜潮. 一种基于主动学习克里金模型的证据理论可靠性分析方法[J]. 机械工程学报, 2024, 60(2): 356-368. |
[12] | 王文林, 张子波, 李英子, 吴永明, 王起新, 梁若霜. 液压缸可靠性试验与数据分析研究平台[J]. 机械工程学报, 2024, 60(18): 385-393. |
[13] | 杨旭锋, 程鑫, 刘泽清. 一种融合交叉熵自适应抽样与ALK模型的可靠性分析方法[J]. 机械工程学报, 2024, 60(16): 73-82. |
[14] | 胡俊宇, 韩旭, 陶友瑞, 李珊瑚, 张建宁. 一种考虑跟随误差的S形轨迹残余振动抑制可靠性分析方法[J]. 机械工程学报, 2024, 60(16): 390-399. |
[15] | 孙之琳, 王凯峰, 顾佩华. 设计理论与方法研究的回顾与展望[J]. 机械工程学报, 2024, 60(13): 2-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||