• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (7): 144-155.doi: 10.3901/JME.2025.07.144

• 特邀专栏:先进纤维增强复合材料加工 • 上一篇    下一篇

扫码分享

碳纤维增强复合材料钻削过程跨尺度三维数值建模及损伤形成机理研究

傅国宇, 李皓, 武卫洲, 李士鹏, 赵庆, 秦旭达   

  1. 天津大学机构理论与装备设计教育部重点实验室 天津 300072
  • 收稿日期:2024-06-03 修回日期:2024-10-15 发布日期:2025-05-12
  • 作者简介:傅国宇,男,1991年出生,博士,助理研究员。主要研究方向为复合材料高性能加工制造及建模技术。E-mail:guoyu07@tju.edu.cn
    李皓(通信作者),男,1989年出生,博士,副教授,博士研究生导师。主要研究方向为复合材料高性能加工及连接装配技术。E-mail:haolitju@tju.edu.cn
    武卫洲,男,1994年出生,博士研究生。主要研究方向为复合材料切削仿真及刀具磨损。E-mail:wwxzz@tju.edu.cn
    李士鹏,男,1989年出生,博士,副教授,博士研究生导师。主要研究方向为航空航天材料高效加工、先进刀具设计。E-mail:shipengli@tju.edu.cn
    赵庆,女,1990年出生,硕士,工程师。主要研究方向为复合材料切削加工。E-mail:qing.zhao@tju.edu.cn
    秦旭达,男,1973年出生,博士,教授,博士研究生导师。主要研究方向为复合材料/难加工材料高效切削机理等。E-mail:qxd@tju.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52375461)。

Three-dimensional Multi-scale Modeling and Drilling Process Technology of Carbon Fiber Reinforced Polymer Composites

FU Guoyu, LI Hao, WU Weizhou, LI Shipeng, ZHAO Qing, QIN Xuda   

  1. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300072
  • Received:2024-06-03 Revised:2024-10-15 Published:2025-05-12

摘要: 碳纤维增强复合材料(CFRP)因其优异的力学性能和轻质特性,已广泛应用于航空、航天、交通运输和民用工业等领域。然而,CFRP的层状结构和各向异性在钻削过程中易产生分层、毛刺和撕裂等缺陷,严重影响连接质量和结构完整性。本研究开发了一种创新的跨尺度加工建模方法,将宏观、介观和微观尺度的材料模型融合到统一的有限元仿真框架中,系统地研究了CFRP在钻削过程中的力学行为和缺陷形成机制。利用Abaqus/Explicit软件,对CFRP层压板的钻削过程进行了详细仿真,揭示了不同纤维角度下的应力分布和损伤演变规律。仿真结果显示,在0°纤维角度下,钻削过程中应力集中在切削区,基体损伤面积减少了35.0%;而在90°纤维角度下,应力沿纤维方向传播,导致严重纤维拔出,表面粗糙且不规则。这一发现通过扫描电子显微镜(SEM)观察和表面粗糙度测量得到了验证。研究进一步表明,合理优化钻削参数和纤维角度可以显著减少加工缺陷,提高CFRP孔的表面质量。本研究不仅提供了理解CFRP钻削过程中应力分布和损伤演变的理论依据,还为优化CFRP加工工艺提供了实用指导。通过跨尺度建模方法的应用,可以有效预测和控制加工过程中的缺陷,提升CFRP结构部件的加工质量和使用寿命。

关键词: 跨尺度建模, 碳纤维增强复合材料(CFRP), 有限元仿真, 钻削加工, 损伤机制

Abstract: Carbon fibre reinforced polymer (CFRP) composites are widely used in aerospace, aviation, transportation, and civil industries due to their excellent mechanical properties and lightweight characteristics. However, the layered structure and anisotropic nature of CFRP lead to defects such as delamination, burrs, and tearing during drilling, which severely affect joint quality and structural integrity. This study developed an innovative multi-scale machining modelling method that integrates macroscopic, mesoscopic, and microscopic material models into a unified finite element simulation framework. The mechanical behaviour and defect formation mechanisms of CFRP during the drilling process are systematically investigated using Abaqus/Explicit software to simulate the drilling process of CFRP laminates in detail, revealing the stress distribution and damage evolution under different fibre orientations. The simulation results show that at a 0° fibre orientation, the drilling stress is concentrated in the cutting zone, resulting in minor damage and relatively smooth surfaces. Conversely, at a 90° fibre orientation, the stress propagated along the fibres, causing severe delamination and fibre pull-out, leading to rough and irregular surfaces. These findings are validated through scanning electron microscope (SEM) observations and surface roughness measurements, with experimental results showing high consistency with the simulation data. Further analysis indicated that optimizing drilling parameters and fibre orientation could significantly reduce machining defects and improve the surface quality of CFRP holes. This study not only provides a theoretical basis for understanding the stress distribution and damage evolution in CFRP drilling but also offers practical guidance for optimizing CFRP machining processes. The application of the multi-scale modelling method allows effective prediction and control of defects during machining, enhancing the machining quality and service life of CFRP structural components.

Key words: multi-scale modeling, carbon fiber reinforced polymer (CFRP), finite element simulation, drilling process, damage mechanism

中图分类号: