• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (18): 240-251.doi: 10.3901/JME.2025.18.240

• 运载工程 • 上一篇    

扫码分享

基于非线性指数触发的分布式驱动六轮转向商用车稳定性控制研究

石轩宇1, 蔡英凤2, 王海1, 孙晓强2, 陈龙2, 杨超3   

  1. 1. 江苏大学汽车与交通工程学院 镇江 212013;
    2. 江苏大学汽车工程研究院 镇江 212013;
    3. 徐工集团工程机械研究院 徐州 221004
  • 收稿日期:2024-10-15 修回日期:2025-03-15 发布日期:2025-11-08
  • 作者简介:石轩宇,男,1996年出生,博士研究生。主要研究方向为智能车辆底盘动力学控制。E-mail:xuan7878@126.com;蔡英凤(通信作者),女,1985年出生,博士,教授,博士研究生导师。主要研究方向为车辆智能控制、智能交通系统、智能汽车等。E-mail:caicaixiao0304@126.com
  • 基金资助:
    国家自然科学基金(52225212,52272418,U22A20100)和国家重点研发计划(2022YFB2503302)资助项目

Stability Control of Distributed Driving Six-wheel Steering Commercial Vehicles Based on Nonlinear Exponential Triggering

SHI Xuanyu1, CAI Yingfeng2, WANG Hai1, SUN Xiaoqiang2, CHEN Long2, YANG Chao3   

  1. 1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013;
    2. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013;
    3. Xuzhou Construction Machinery Research Institute, XCMG,, Xuzhou 221004
  • Received:2024-10-15 Revised:2025-03-15 Published:2025-11-08

摘要: 多轮转向与附加横摆力矩系统的引入,有助于提升智能商用车路径跟踪能力,并改善其在极限工况下的动力学稳定性能,但如何应对多子系统之间的耦合以及介入时的冗余与冲突是关键难题。针对该问题,引入李雅普诺夫指数稳定性判据,基于状态量在无限长时间内的矢量膨胀或收缩平均速率,构建实时非线性触发指数;由驾驶员转向指令控制前轮转角进行路径跟踪,当稳定性指数达到各子系统触发阈值时,以积分终端滑模算法控制中后轴辅助转向,以比例-积分-微分滑模算法控制附加横摆力矩,并完成各轮驱动力矩的优化分配。同时,提出包含动态裕度的子系统触发逻辑架构,解决子系统频繁介入引起的控制波动。最后,通过Simulink-TruckSim联合仿真进行算法验证,结果表明:在高速域,触发机制可使各子系统适时介入,降低触发频率,充分发挥车辆的极限稳定性能;在低速域,触发机制的引入避免了车辆稳定时的子系统非必要响应,降低多子系统冗余致动产生的负面效应;触发机制在保障车辆稳定性的前提下,未对路径跟踪性能产生不利影响。

关键词: 分布式驱动, 六轮转向商用车, 李雅普诺夫指数, 稳定性控制, 事件触发

Abstract: The introduction of multi-wheel steering and additional yaw moment system is helpful to enhance the path tracking capability of intelligent commercial vehicles and improve their dynamic stability under limited conditions, but how to deal with the coupling between multiple sub-systems and the redundancy and conflict during intervention is a key problem. For this problem, the Lyapunov exponents is introduced, and the real-time nonlinear trigger index is constructed based on the average rate of vector expansion or contraction of states in infinite time. When the stability index reaches the trigger threshold of each subsystem, the middle-rear wheel assist steering is controlled by integrating terminal sliding mode control, the additional yaw moment is controlled by proportional-integral-differential sliding mode control, and the optimal distribution of each wheel drive torque is completed. At the same time, a subsystem trigger logic architecture containing dynamic margin is proposed to solve the control fluctuation caused by frequent subsystem intervention. Finally, the algorithm is verified by Simulink-TruckSim co-simulation. The results show that:in the high-speed domain, the mechanism can be timely triggered each subsystem, reducing the trigger frequency, and giving full play to the limited stability of the vehicle. In the low speed domain, the trigger mechanism avoids the unnecessary subsystem response when the vehicle is stabilized, and reduces the negative effect caused by the redundancy of multiple subsystems. On the premise of ensuring vehicle stability, the trigger mechanism does not adversely affect the path tracking performance.

Key words: distributed driving, six-wheel steering commercial vehicles, Lyapunov exponents, stability control, event triggering

中图分类号: