机械工程学报 ›› 2025, Vol. 61 ›› Issue (15): 4-20.doi: 10.3901/JME.2025.15.004
• 综述 • 上一篇
张洁1,2,3, 丁鹏飞1,2,3,4, 王柏村5, 张朋1,2,3, 吕佑龙1,2,3, 汪俊亮1,2,3
收稿日期:
2025-01-17
修回日期:
2025-05-28
发布日期:
2025-09-28
作者简介:
张洁(通信作者),女,1963年出生,博士,教授,博士研究生导师。主要研究方向为智能制造与机器人、具身智能、人机协作、大数据智能、强化学习、机器认知学习和复杂系统建模与控制。E-mail:mezhangjie@dhu.edu.cn;丁鹏飞,男,1994年出生,博士研究生。主要研究方向为人机协作装配和人本智造。E-mail:pengfeiding@mail.dhu.edu.cn;王柏村,男,1990年出生,博士,研究员,博士研究生导师。主要研究方向为人本智造、人-信息-物理系统、数字孪生。E-mail:baicunw@zju.edu.cn;张朋,男,1988年出生,博士,副教授,硕士研究生导师。主要研究方向为制造系统优化调度与控制、智能优化算法、复杂系统建模与调度、智能制造与机器人、具身智能、人机协作。E-mail:zhangp88@dhu.edu.cn;吕佑龙,男,1988年出生,博士,副教授,博士研究生导师。主要研究方向为制造系统优化调度与控制、智能优化算法、复杂系统建模与调度、智能制造与机器人和人机协作。E-mail:lvyoulong@dhu.edu.cn;汪俊亮,男,1991年出生,博士,副研究员,硕士研究生导师。主要研究方向为智能制造系统、工业大数据、智能制造与机器人和人机协作。E-mail:junliangwang@dhu.edu.cn
基金资助:
ZHANG Jie1,2,3, DING Pengfei1,2,3,4, WANG Baicun5, ZHANG Peng1,2,3, Lü Youlong1,2,3, WANG Junliang1,2,3
Received:
2025-01-17
Revised:
2025-05-28
Published:
2025-09-28
摘要: 欧盟工业5.0赋予了智能制造新的时代内涵——以人为本,促进了人本智造(以人为本的智能制造)的快速发展。作为人本智造的核心范式之一,人机协作已成为近年来工业制造领域的研究热点。因此,对人机协作的过去和未来进行全面分析:梳理人机关系发展与演变,探讨人机协作模式的迭代与融合,归纳人机协作在多个领域的典型应用,展望人机协作未来发展愿景与技术突破方向。从工业化发展历程与人机共情程度的耦合关联中,阐述人机关系的发展与演变过程。基于人机关系及其协作特点,对制造系统人机协作模式的迭代与融合进行分析与总结。归纳人机交互、人机协同和人机共生三种人机协作典型模式在产品装配、机器人控制、自主驾驶等领域的应用,讨论不同人机协作模式在实际应用中存在的不足与挑战。展望人机协作未来愿景与发展方向,探讨未来人机协作时代需要突破的新技术、新理论,以期促进制造系统人机协作迈向人本智造新的层级。
中图分类号:
张洁, 丁鹏飞, 王柏村, 张朋, 吕佑龙, 汪俊亮. 面向人本智造的人机协作:发展演变、融合应用与未来展望[J]. 机械工程学报, 2025, 61(15): 4-20.
ZHANG Jie, DING Pengfei, WANG Baicun, ZHANG Peng, Lü Youlong, WANG Junliang. Human-robot Collaboration for Human-centric Smart Manufacturing: Developmental Evolution, Integration Applications, and Future Perspectives[J]. Journal of Mechanical Engineering, 2025, 61(15): 4-20.
[1] 王柏村,薛塬,延建林,等.以人为本的智能制造:理念、技术与应用[J].中国工程科学,2020,22(4):139-146.WANG Baicun, XUE Yuan, YAN Jianlin, et al.Human-centered intelligent manufacturing:Overview and perspectives[J]. Strategic Study of CAE,2020,22(4):139-146. [2] 臧冀原,刘宇飞,王柏村,等.面向2035的智能制造技术预见和路线图研究[J].机械工程学报,2022,58(4):285-304.ZANG Jiyuan, LIU Yufei, WANG Baicun, et al.Technology forecasting and roadmapping of intelligent manufacturing by 2035[J]. Journal of Mechanical Engineering,2022,58(4):285-304. [3] 王柏村,黄思翰,易兵,等.面向智能制造的人因工程研究与发展[J].机械工程学报,2020,56(16):240-253.WANG Baicun, HUANG Sihan, YI Bing, et al.State-of-art of human factors/ergonomics in intelligent manufacturing[J]. Journal of Mechanical Engineering,2020,56(16):240-253. [4] 王柏村,易兵,刘振宇,等. HCPS视角下智能制造的发展与研究[J].计算机集成制造系统,2021,27(10):2749-2761.WANG Baicun,YI Bing,LIU Zhengyu,et al. Evolution and state-of-the-art of intelligent manufacturing from HCPS perspective[J]. Computer Integrated Manufacturing Systems,2021,27(10):2749-2761. [5] 黄思翰,王柏村,张美迪,等.面向人本智造的新一代操作工:参考架构、使能技术与典型场景[J].机械工程学报,2022,58(18):251-264.HUANG Sihan,WANG Baicun,ZHANG Meidi,et al.Operator 4.0 towards human-centric smart manufacturing:Framework,enabling technologies and typical scenarios[J].Journal of Mechanical Engineering, 2022, 58(18):251-264. [6] LI S,ZHENG P,LIU S,et al. Proactive human-robot collaboration:Mutual-cognitive,predictable,and selforganising perspectives[J]. Robotics and ComputerIntegrated Manufacturing,2023,81:102510. [7] LENG J,SHA W,WANG B,et al. Industry 5.0:Prospect and retrospect[J]. Journal of Manufacturing Systems,2022,65:279-295. [8] REALYVÁSQUEZ-VARGAS A,ARREDONDO-SOTO K C,GARCÍA-ALCARAZ J L,et al. Introduction and configuration of a collaborative robot in an assembly task as a means to decrease occupational risks and increase efficiency in a manufacturing company[J]. Robotics and Computer-Integrated Manufacturing,2019,57:315-328. [9] LU Y, ZHENG H, CHAND S, et al. Outlook on human-centric manufacturing towards Industry 5.0[J].Journal of Manufacturing Systems,2022,62:612-627. [10] ZHOU J, ZHOU Y, WANG B, et al. Humancyber-physical systems (HCPSs) in the context of newgeneration intelligent manufacturing[J]. Engineering,2019,5(4):624-636. [11] WANG B,TAO F,FANG X,et al. Smart manufacturing and intelligent manufacturing:A comparative review[J].Engineering,2021,7(6):738-757. [12] WANG T,ZHENG P,Li S,et al. Multimodal humanrobot interaction for human-centric smart manufacturing:A survey[J]. Advanced Intelligent Systems,2024,6(3):2300359. [13] WANG B,SONG C,LI X,et al. A deep learning-enabled visual-inertial fusion method for human pose estimation in occluded human-robot collaborative assembly scenarios[J].Robotics and Computer-Integrated Manufacturing,2025,93:102906. [14] ZHOU J,LI P,ZHOU Y,et al. Toward new-generation intelligent manufacturing[J]. Engineering,2018,4(1):11-20. [15] XU W,CUI J,LI L,et al. Digital twin-based industrial cloud robotics:Framework, control approach and implementation[J]. Journal of Manufacturing Systems,2021,58:196-209. [16] ZHANG R,LIU X,SHUAI J,et al. Collaborative robot and mixed reality assisted microgravity assembly for large space mechanism[J]. Procedia Manufacturing,2020,51:38-45. [17] GARCIA M.A.R,ROJAS R,GUALTIERI L,et al. A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing[J]. Procedia CIRP,2019,81:600-605. [18] GAO F,XIA L,ZHANG J,et al. Integrating large language model for natural language-based instruction toward robust human-robot collaboration[J]. Procedia CIRP,2024,130:313-318. [19] LIU Y,WANG S,YUAN M,et al. Fusing human action recognition and object detection for human-robot collaborative assembly[J]. International Journal of Modeling,Simulation,and Scientific Computing,2024:2541008. [20] DING P,ZHANG J,ZHANG P,et al. A spatial-temporal graph neural network with hawkes process for temporal hypergraph reasoning towards robotic decision-making in proactive human-robot collaboration[C]//2024 IEEE 20th International Conference on Automation Science and Engineering (CASE). IEEE,2024:514-519. [21] WANG T,LIU Z,WANG L. Data-efficient multimodal human action recognition for proactive human-robot collaborative assembly:A cross-domain few-shot learning approach[J]. Robotics and Computer Integrated Manufacturing,2024,89:102785. [22] LI S,WANG Z,YAN Z,et al. Large language model for humanoid cognition in proactive human-robot collaboration[C]//2024 IEEE 20th International Conference on Automation Science and Engineering (CASE). IEEE,2024:540-545. [23] LIU X,ZHENG L,WANG Y,et al. Human-centric collaborative assembly system for large-scale space deployable mechanism driven by digital twins and wearable AR devices[J]. Journal of Manufacturing Systems,2022,65:720-742. [24] LI S,FAN J,ZHENG P,et al. Transfer learning-enabled action recognition for human-robot collaborative assembly[J]. Procedia CIRP,2021,104:1795-1800. [25] DING P,ZHANG J,ZHENG P,et al. Dynamic scenarioenhanced diverse human motion prediction network for proactive human-robot collaboration in customized assembly tasks[J]. Journal of Intelligent Manufacturing,2024(22):1-20. [26] WANG B,LI Y,FREIHEIT T. Towards intelligent welding systems from a HCPS perspective:A technology framework and implementation roadmap[J]. Journal of Manufacturing Systems,2022,65:244-259. [27] DING P,ZHANG J,ZHANG P,et al. Dynamic scene semantic information guided framework for human motion prediction in proactive human-robot collaboration[C]//2023 28th International Conference on Automation and Computing (ICAC). IEEE,2023:1-6. [28] WAN K,LI C,LO F S,et al. A virtual reality-based immersive teleoperation system for remote human-robot collaborative manufacturing[J]. Manufacturing Letters,2024,41:43-50. [29] GAO J,WANG G,XIAO J,et al. Partially observable deep reinforcement learning for multi-agent strategy optimization of human-robot collaborative disassembly:A case of retired electric vehicle battery[J]. Robotics and Computer-Integrated Manufacturing,2024,89:102775. [30] 蒋周明矩,熊异,王柏村.面向工业5.0的人机协作增材制造[J].机械工程学报,2024,60(3):238-253.JIANG Zhoumingju, XIONG Yi, WANG Baicun.Human-machine collaborative additive manufacturing for industry 5.0[J]. Journal of Mechanical Engineering,2024,60(3):238-253. [31] ZHENG P, LI S, FAN J, et al. A collaborative intelligence-based approach for handling human-robot collaboration uncertainties[J]. CIRP Annals,2023,72(1):1-4. [32] LI S,YOU Y,ZHENG P,et al. Mutual-cognition for proactive human-robot collaboration:A mixed reality-enabled visual reasoning-based method[J]. IISE Transactions,2024,56(10):1099-1111. [33] FAN J, YIN Y, WANG T, et al. Vision-language model-based human-robot collaboration for smart manufacturing:A state-of-the-art survey[J]. Frontiers of Engineering Management,2025,12:177-120. [34] XU Z,ZHANG J,ZHANG P,et al. Skeleton-weighted and multi-scale temporal-driven network for video action recognition[J]. Journal of Electronic Imaging,2024,33(6):063056. [35] GAO B,FAN J,ZHENG P. Empower dexterous robotic hand for human-centric smart manufacturing:A perception and skill learning perspective[J]. Robotics and Computer-Integrated Manufacturing,2025,93:102909. [36] ZHENG P,LI C,FAN J,et al. A vision-language-guided and deep reinforcement learning-enabled approach for unstructured human-robot collaborative manufacturing task fulfilment[J]. CIRP Annals,2024,73(1):341-344. [37] HUI J,ZHANG Y,DING K,et al. A multi-stage approach for desired part grasping under complex backgrounds in human-robot collaborative assembly[J]. Advanced Engineering Informatics,2024,62:102778. [38] LI S,XIE H L,ZHENG P,et al. Industrial metaverse:A proactive human-robot collaboration perspective[J].Journal of Manufacturing Systems,2024,76:314-319. [39] LIU S,ZHANG J,WANG L,et al. Vision AI-based human-robot collaborative assembly driven by autonomous robots[J]. CIRP Annals,2024,73(1):13-16. [40] YAO B,YANG B,XU W,et al. Virtual data generation for human intention prediction based on digital modeling of human-robot collaboration[J]. Robotics and Computer-Integrated Manufacturing,2024,87:102714. [41] ZHANG Y,DING K,HUI J,et al. Skeleton-RGB integrated highly similar human action prediction in human-robot collaborative assembly[J]. Robotics and Computer-Integrated Manufacturing,2024,86:102659. [42] FAN J,ZHENG P,LI S,et al. An integrated hand-object dense pose estimation approach with explicit occlusion awareness for human-robot collaborative disassembly[J].IEEE Transactions on Automation Science and Engineering,2022,21(1):147-156. [43] LI S,ZHENG P,PANG S,et al. Self-organising multiple human-robot collaboration:A temporal subgraph reasoning-based method[J]. Journal of Manufacturing Systems,2023,68:304-312. [44] REN M,CHEN N,QIU H. Human-machine collaborative decision-making:An evolutionary roadmap based on cognitive intelligence[J]. International Journal of Social Robotics,2023,15(7):1101-1114. [45] LI J M,WU T J,WU Y J,et al. Systematic literature review of human-machine collaboration in organizations using bibliometric analysis[J]. Management Decision,2023,61(10):2920-2944. [46] WANG Q,LIU H,ORE F,et al. Multi-actor perspectives on human robotic collaboration implementation in the heavy automotive manufacturing industry-A Swedish case study[J]. Technology in Society,2023,72:102165. [47] ZHENG P,LI S,XIA L,et al. A visual reasoning-based approach for mutual-cognitive human-robot collaboration[J].CIRP Annals,2022,71(1):377-380. [48] LIU S,WANG X V,WANG L. Digital twin-enabled advance execution for human-robot collaborative assembly[J]. CIRP Annals,2022,71(1):25-28. [49] LI S,ZHENG P,WANG Z,et al. Dynamic scene graph for mutual-cognition generation in proactive human-robot collaboration[J]. Procedia CIRP,2022,107:943-948. [50] YI S,LIU S,XU X,et al. A vision-based human-robot collaborative system for digital twin[J]. Procedia CIRP,2022,107:552-557. [51] INGA J,RUESS M,ROBENS J.H,et al. Human-machine symbiosis:A multivariate perspective for physically coupled human-machine systems[J]. International Journal of Human-Computer Studies,2023,170:102926. [52] WANG B,ZHOU H,YANG G,et al. Human digital twin (HDT) driven human-cyber-physical systems:Key technologies and applications[J]. Chinese Journal of Mechanical Engineering,2022,35(1):1-11. [53] NARDO M,FORINO D,MURINO T. The evolution of man-machine interaction:The role of human in Industry4.0 paradigm[J]. Production&Manufacturing Research,2020,8(1):20-34. [54] AGRANOVSKY E. Technology in the Law:Helpful advancement or detrimental complication[J]. U. Cent. Fla.Dep't Legal Stud. LJ,2022,5:187. [55] KOLLING A,WALKER P,CHAKRABORTY N,et al.Human interaction with robot swarms:A survey[J]. IEEE Transactions on Human-Machine Systems,2015,46(1):9-26. [56] NORMAN D A. How might people interact with agents[J].Communications of the ACM,1994,37(7):68-71. [57] HÖÖK K. Steps to take before intelligent user interfaces become real[J]. Interacting with Computers,2000,12(4):409-426. [58] WENSKOVITCH J, NORTH C. Interactive artificial intelligence:Designing for the"two black boxes"problem[J]. Computer,2020,53(8):29-39. [59] MARCHIORI D, WARGLIEN M. Predicting human interactive learning by regret-driven neural networks[J].Science,2008,319(5866):1111-1113. [60] 杨赓,周慧颖,王柏村.数字孪生驱动的智能人机协作:理论、技术与应用[J].机械工程学报,2022,58(18):279-291.YANG Geng,ZHOU Huiying,WANG Baicun. Digital twin-driven smart human-machine collaboration:Theory,enabling technologies and applications[J]. Journal of Mechanical Engineering,2022,58(18):279-291. [61] DUAN J,ZHUANG L,ZHANG Q,et al. Multimodal perception-fusion-control and human-robot collaboration in manufacturing:A review[J]. The International Journal of Advanced Manufacturing Technology,2024,132(3):1071-1093. [62] SANFILIPPO F,ZAFAR M H,WILEY T,et al. From caged robots to high-fives in robotics:Exploring the paradigm shift from human-robot interaction to human-robot teaming in human-machine interfaces[J].Journal of Manufacturing Systems,2025,78:1-25. [63] ROVEDA L,TESTA A,SHAHID A A,et al. QLearning-based model predictive variable impedance control for physical human-robot collaboration[J].Artificial Intelligence,2022,312:103771. [64] NOURMOHAMMADI A,FATHI M,NG A.H. Balancing and scheduling assembly lines with human-robot collaboration tasks[J]. Computers&Operations Research,2022,140:105674. [65] CAI Z,FENG Z,ZHOU L,et al. A framework and algorithm for human-robot collaboration based on multimodal reinforcement learning[J]. Computational Intelligence and Neuroscience,2022(1):2341898. [66] WANG B,HU S.J,SUN L,et al. Intelligent welding system technologies:State-of-the-art review and perspectives[J]. Journal of Manufacturing Systems,2020,56:373-391. [67] DING P,ZHANG J,ZHANG P,et al. A stacked graph neural network with self-exciting process for robotic cognitive strategy reasoning in proactive human-robot collaborative assembly[J]. Advanced Engineering Informatics,2025,63:102957. [68] JOHN A R,SINGH A K,GRAMANN K,et al. Prediction of cognitive conflict during unexpected robot behavior under different mental workload conditions in a physical human-robot collaboration[J]. Journal of Neural Engineering,2024,21(2):026010. [69] WANG L. A futuristic perspective on human-centric assembly[J]. Journal of Manufacturing Systems,2022,62:199-201. [70] LI J,GU X,QIU S,et al. A survey of wearable lower extremity neurorehabilitation exoskeleton:Sensing,gait dynamics, and human-robot collaboration[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems,2024,54(6):3675-3693. [71] JI Z,LIU Q,XU W,et al. A closed-loop brain-computer interface with augmented reality feedback for industrial human-robot collaboration[J]. The International Journal of Advanced Manufacturing Technology, 2021, 124:3083-3098. [72] LYU J,MAÝE A,GÖRNER M,et al. Coordinating human-robot collaboration by EEG-based human intention prediction and vigilance control[J]. Frontiers in Neurorobotics,2022,16:1068274. [73] BARRAVECCHIA F, BARTOLOMEI M,MASTROGIACOMO L,et al. Redefining human-robot symbiosis:A bio-inspired approach to collaborative assembly[J]. The International Journal of Advanced Manufacturing Technology,2023,128(5-6):2043-2058. [74] ZHU H,GABLER V,WOLLHERR D. Legible action selection in human-robot collaboration[C]//2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). IEEE,2017:354-359. [75] GERVASI R,MASTROGIACOMO L,FRANCESCHINI F. Towards the definition of a human-robot collaboration scale[M]//Statistical Methods for Service Quality Evaluation. Cuzzolin,2019:75-80. [76] RONZONI M,ACCORSI R,BOTTI L,et al. A supportdesign framework for cooperative robots systems in labor-intensive manufacturing processes[J]. Journal of Manufacturing Systems,2021,61:646-657. [77] DE GEA FERNÁNDEZ J,MRONGA D,GÜNTHER M,et al. Multimodal sensor-based whole-body control for human-robot collaboration in industrial settings[J].Robotics and Autonomous Systems,2017,94:102-119. [78] MATHESON E,MINTO R,ZAMPIERI E.G,et al.Human-robot collaboration in manufacturing applications:A review[J]. Robotics,2019,8(4):100. [79] PARRA P S,CALLEROS O.L,RAMIREZ-SERRANO A.Human-robot collaboration systems:Components and applications[C]//Int. Conf. Control,Dynamic Syst.,Robot.2020:1-9. [80] NICORA M L,AMBROSETTI R,WIENS G.J,et al.Human-robot collaboration in smart manufacturing:Robot reactive behavior intelligence[J]. Journal of Manufacturing Science and Engineering,2021,143(3):031009. [81] SEGURA P, LOBATO-CALLEROS O, RAMÍREZSERRANO A,et al. Human-robot collaborative systems:Structural components for current manufacturing applications[J]. Advances in Industrial and Manufacturing Engineering,2021,3:100060. [82] EL ZAATARI S, MAREI M, LI W, et al. Cobot programming for collaborative industrial tasks:An overview[J]. Robotics and Autonomous Systems,2019,116:162-180. [83] WANG X V,KEMÉNY Z,VÁNCZA J,et al. Humanrobot collaborative assembly in cyber-physical production:Classification framework and implementation[J]. CIRP Annals,2017,66(1):5-8. [84] HARRIOTT C E,BUFORD G L,ADAMS J A,et al.Mental workload and task performance in peer-based human-robot teams[J]. Journal of Human-Robot Interaction,2015,4(2):61-96. [85] MIHELJ M,BAJD T,UDE A,et al. Collaborative Robots[J]. Robotics,2019:173-187. [86] VASIC M,BILLARD A. Safety issues in human-robot interactions[C]//2013 IEEE International Conference on Robotics and Automation. IEEE,2013:197-204. [87] WANG P S,YANG T,YU L C. Lean-pull strategy for order scheduling problem in a multi-site semiconductor crystal ingot-pulling manufacturing company[J].Computers&Industrial Engineering,2018,125:545-562. [88] LI C,YANG H J. Bot-x:An ai-based virtual assistant for intelligent manufacturing[J]. Multiagent and Grid Systems,2021,17(1):1-14. [89] ALIX T,BENAMA Y,PERRY N. A framework for the design of a reconfigurable and mobile manufacturing system[J]. Procedia Manufacturing,2019,35:304-309. [90] ANDRUSYSHYN V,ANDRUSYSHYN I,ŽIDEK K,et al. Creating a digital twin of the ABB Yumi Robot to improve the human-robot interaction experience[C]//2024 25th International Carpathian Control Conference (ICCC).IEEE,2024:1-4. [91] BEJARANO R,FERRER B R,MOHAMMED W M,et al. Implementing a human-robot collaborative assembly workstation[C]//2019 IEEE 17th International Conference on Industrial Informatics (INDIN). IEEE,2019:557-564. [92] LIU S,WANG L,GAO R X. Cognitive neuroscience and robotics:Advancements and future research directions[J].Robotics and Computer-Integrated Manufacturing,2024,85:102610. [93] MOHAMMED A,WANG L. Advanced human-robot collaborative assembly using electroencephalogram signals of human brains[J]. Procedia CIRP,2020,93:1200-1205. [94] WANG M,ZHANG P,ZHANG G,et al. A resilient scheduling framework for multi-robot multi-station welding flow shop scheduling against robot failures[J].Robotics and Computer-Integrated Manufacturing,2025,91:102835. [95] WANG M,ZHANG J,ZHANG P,et al. Independent double DQN-based multi-agent reinforcement learning approach for online two-stage hybrid flow shop scheduling with batch machines[J]. Journal of Manufacturing Systems,2022,65:694-708. [96] VERNA E,PUTTERO S,GENTA G,et al. Exploring the effects of perceived complexity criteria on performance measures of human-robot collaborative assembly[J]. Journal of Manufacturing Science and Engineering,2023,145(10):101014. [97] JI Y,ZHANG Z,TANG D,et al. A multimodal construction method for a digital twin system with human-robot collaboration[C]//2023 8th International Conference on Control,Robotics and Cybernetics (CRC).IEEE,2024:92-96. [98] VAN DIJK W,BALTRUSCH S J,DESSERS E,et al.The effect of human autonomy and robot work pace on perceived workload in human-robot collaborative assembly work[J]. Frontiers in Robotics and AI,2023,10:1244656. [99] WANG L,ZOU Y,WANG H,et al. Icon similarity model based on cognition and deep learning[J].Displays,2024,85:102864. [100] LIU C,ZHANG Z,TANG D,et al. A mixed perceptionbased human-robot collaborative maintenance approach driven by augmented reality and online deep reinforcement learning[J]. Robotics and ComputerIntegrated Manufacturing,2023,83:102568. [101] CHOW J C,WONG V,SANDERS L,et al. Developing an AI-assisted educational chatbot for radiotherapy using the IBM Watson assistant platform[C]//Healthcare.MDPI,2023,11(17):2417. [102] PARK H,SHIN M,CHOI G,et al. Integration of an exoskeleton robotic system into a digital twin for industrial manufacturing applications[J]. Robotics and Computer-Integrated Manufacturing,2024,89:102746. [103] BARRAVECCHIA F, BARTOLOMEI M,MASTROGIACOMO L, et al. Designing symbiotic human-robot collaboration in assembly tasks[J].Production Engineering,2025,19:629-661. [104] ZHANG H,YAN W,HU H,et al. An LLM-based knowledge and function-augmented approach for optimal design of remanufacturing process[J]. Advanced Engineering Informatics,2025,65:103206. [105] MO Z, GONG L, GAO J, et al. A knowledge graph-based implicit requirement mining method in personalized product development[J]. Applied Sciences (Switzerland),2024,14(17):7550. [106] CHEN S,REN Z,YU X,et al. A dynamic model of evolutionary knowledge and capabilities based on human-machine interaction in smart manufactures[J].Computational Intelligence and Neuroscience,2022,2022(1):8584888. |
[1] | 寇逸群, 杨晔, 刘颉, 胡友民, 李林, 俞百川, 徐家和, 胡中旭, 史铁林. 面向认知赋能的人机协作:进展、挑战和展望[J]. 机械工程学报, 2025, 61(3): 1-22. |
[2] | 崔凯越, 洪兆溪, 娄山河, 闫炜煜, 冯毅雄, 谭建荣. 人机协作的掘进机截割部故障率稳健性容差设计[J]. 机械工程学报, 2025, 61(3): 77-90. |
[3] | 李嘉佳, 易茜, 冯毅雄, 朱鹏兴, 易树平. 人本智造单元中人-智能系统协同双智能体工作机制研究[J]. 机械工程学报, 2025, 61(3): 105-118. |
[4] | 黄思翰, 陈建鹏, 徐哲, 阎艳, 王国新. 基于大语言模型和机器视觉的智能制造系统人机自主协同作业方法[J]. 机械工程学报, 2025, 61(3): 130-141. |
[5] | 吴少卿, 李聪波, 曹华军, 王凌, 李新宇. 高能效制造研究现状及展望[J]. 机械工程学报, 2025, 61(13): 142-157. |
[6] | 张党, 赵永宣, 王振军, 张映锋. 数据-知识混合驱动的离散制造系统智能控制体系构架研究[J]. 机械工程学报, 2024, 60(6): 1-10,20. |
[7] | 蒋周明矩, 熊异, 王柏村. 面向工业5.0的人机协作增材制造[J]. 机械工程学报, 2024, 60(3): 238-253. |
[8] | 喻惟刚, 文思捷, 李建军, 李心雨. 基于可供性推理的人机协作拆卸序列规划方法[J]. 机械工程学报, 2024, 60(17): 297-309. |
[9] | 王文波, 张映锋, 顾寄南, 张耿, 完严. 数据驱动的离散制造系统性能退化机理建模与预测控制方法研究[J]. 机械工程学报, 2024, 60(16): 400-411. |
[10] | 吴其林, 赵韩, 陈晓飞, 赵雅婷. 多臂协作机器人技术与应用现状及发展趋势[J]. 机械工程学报, 2023, 59(15): 1-16. |
[11] | 汪俊亮, 高鹏捷, 张洁, 王力翚. 制造大数据分析综述:内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16. |
[12] | 姚锡凡, 马南峰, 张存吉, 周佳军. 以人为本的智能制造:演进与展望[J]. 机械工程学报, 2022, 58(18): 2-15. |
[13] | 马南峰, 姚锡凡, 陈飞翔, 俞鸿均, 王柯赛. 面向工业5.0的人本智造[J]. 机械工程学报, 2022, 58(18): 88-102. |
[14] | 鲍劲松, 张荣, 李婕, 陆玉前, 彭涛. 面向人-机-环境共融的数字孪生协同技术[J]. 机械工程学报, 2022, 58(18): 103-115. |
[15] | 宋学官, 何西旺, 李昆鹏, 来孝楠, 李忠海. 人体骨骼数字孪生的构建方法及应用[J]. 机械工程学报, 2022, 58(18): 218-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||