• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 273-284.doi: 10.3901/JME.2025.14.273

• 可再生能源与工程热物理 • 上一篇    

扫码分享

基于对叶素动量理论修正的弯掠叶片气弹耦合方法研究

马新稳1,2,3, 彭响华4, 孙敬伟1,2, 陈严1,2   

  1. 1. 汕头大学工学院 汕头 515063;
    2. 汕头大学智能制造技术教育部重点实验室 汕头 515063;
    3. 惠州市惠阳区住房和城乡建设局 惠州 516211;
    4. 惠州学院电子信息与电气工程学院 惠州 516007
  • 收稿日期:2024-06-18 修回日期:2025-03-18 发布日期:2025-08-25
  • 作者简介:马新稳,男,1985年出生,博士研究生。主要研究方向为风力机气动弹性。E-mail:10xwma@stu.edu.cn;陈严(通信作者),男,1964年出生,博士,教授,博士研究生导师。主要研究方向为风力机气动弹性,流体力学。E-mail:ychen@stu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB4201200)、广东省自然科学基金面上(2023A1515012096)和广东省科技创新战略专项市县科技创新支撑(STKJ2023074)资助项目。

Investigation of Aeroelastic Coupling Method for Swept Blade Based on Modification of Blade Element Momentum Theory

MA Xinwen1,2,3, PENG Xianghua4, SUN Jingwei1,2, CHEN Yan1,2   

  1. 1. College of Engineering, Shantou University, Shantou 515063;
    2. Key Laboratory of Intelligent Manufacturing Technology, Shantou University, Ministry of Education, Shantou 515063;
    3. Huizhou Huiyang District Housing and Urban-rural Development Bureau, Huizhou 516211;
    4. School of Electric Information and Electrical Engineering, Huizhou University, Huizhou 516007
  • Received:2024-06-18 Revised:2025-03-18 Published:2025-08-25

摘要: 弯掠叶片的弯扭自适应降载特性逐渐成为研究热点,弯掠叶片的高效气弹分析方法仍未成熟。基于升力线理论从弯掠引起的螺旋尾涡角位移变化和弯曲附着涡产生自身诱导速度两个方面推导了弯掠叶片与直叶片的气动性能差异,将上述差异用轴向诱导因子进行表征,将其引入叶素动量(Blade element momentum,BEM)理论中对轴向诱导因子进行修正,建立修正的弯掠叶片气动计算模型SweptBEM,并分析影响弯掠叶片气动性能的关键几何参数。利用几何精确梁(Geometrically exact beam,GEB)建立叶片的结构动力学模型,并在时域仿真中把叶片的变形精确描述并反馈回SweptBEM实现了气弹耦合。研究结果表明,SweptBEM模型可以准确高效地表征弯掠叶片气动特性和气弹行为,其中10 MW后掠叶片的风轮功率增加+7%,推力增加+2.2%。基于SweptBEM的气弹模型对指导弯掠叶片的工程实践具有现实意义。

关键词: 风力机叶片, 气动弹性, 叶素动量理论, 弯掠构型

Abstract: The bend-twist adaptive load reduction characteristics of swept blades have gradually become a research hotspot. However, efficient aeroelastic analysis methods for swept blades are still not fully developed. The differences in aerodynamic performance between swept and straight blades are derived based on lifting line theory, focusing on the azimuthal displacement of the trailed helical vorticity system and the induction of the curved bound vortex on itself. These differences were represented by the axial induction factor, which was then introduced into the blade element momentum(BEM) theory for modification. This led to the development of the modified aerodynamic model for swept blades, termed SweptBEM. Additionally, the key geometric parameters influencing the aerodynamic performance of swept blades were analyzed. A structural dynamics model of the blade was established using the geometrically exact beam(GEB) theory. When carrying out aeroelastic simulations, the accurate blade deformations are fed back into the aerodynamic model with sweep correction. The results indicate that the proposed SweptBEM model can accurately and efficiently characterizes the aerodynamic characteristics and aeroelastic behavior of swept blades. Moreover, the power of 10MW rotor with swept blade increases by +7% and the thrust increases by +2.2%. The aeroelastic model developed based on SweptBEM has practical significance for guiding the engineering application of swept blades.

Key words: wind turbine blade, aeroelasticity, blade element momentum, swept geometric configuration

中图分类号: