[1] 李涤尘,贺健康,田小永,等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报,2013,49(6):129-135. LI Dichen,HE Jiankang,TIAN Xiaoyong,et al. Additive manufacturing:Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering,2013,49(6):129-135. [2] TANG Z J, LIU W W, WANG Y W,et al. A review on in situ monitoring technology for directed energy deposition of metals[J]. The International Journal of Advanced Manufacturing Technology,2020,108(11):3437-3463. [3] DASS A,MORIDI A. State of the art in directed energy deposition:From additive manufacturing to materials design[J]. Coatings,2019,9(7):418. [4] SONG B X,YU T B,JIANG X Y,et al. The relationship between convection mechanism and solidification structure of the iron-based molten pool in metal laser direct deposition[J]. International Journal of Mechanical Sciences,2020(165):105207. [5] ZHAO Y F,KOIZUMI Y,AOYAGI K,et al. Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy[J]. Additive Manufacturing,2019,26:202-214. [6] SUN Z,GUO W,LI L. Numerical modelling of heat transfer,mass transport and microstructure formation in a high deposition rate laser directed energy deposition process[J]. Additive Manufacturing,2020,33(10):101175. [7] 肖文甲,许宇翔,宋立军. 面向增材制造的熔池凝固组织演变的相场研究[J]. 力学学报,2021,53(12):3252-3262. XIAO Wenjia,XU Yuxiang,SONG Lijun. Phase-field study on the evolution of microstructure of the molten pool for additive manufacturing[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(12):3252-3262. [8] LEE J,CHUNG H. Experimental investigation of deposition pattern on the temperature and distortion of direct energy deposition-based additive manufactured part[J]. Applied Sciences-Basel,2020,10(21):7653. [9] 唐梓珏,刘伟嵬,颜昭睿,等. 基于熔池动态特征的金属激光熔化沉积形状精度演化行为研究[J]. 机械工程学报,2019,55(15):39-47. TANG Zijue,LIU Weiwei,YAN Zhaorui,et al. Study on evolution behavior of geometrical accuracy based on dynamic characteristics of molten pool in laser-based direct energy deposition[J]. Journal of Mechanical Engineering,2019,55(15):39-47. [10] 崔承云,方翠,张文龙. Marangoni流对激光熔覆热行为和熔体流动行为的影响[J]. 应用激光,2018,38(3):8. CUI Chengyun,FANG Cui,ZHANG Wenlong. Effects of marangoni flow on the thermal behavior and melt flow behavior in laser cladding[J]. Applied Laser,2018,38(3):8. [11] 熊安辉,丁洁琼,刘延辉,等. 钛合金表面激光熔覆熔池的数值模拟[J]. 应用激光,2019,39(3):381-386. XIONG Anhui,DING Jieqiong,LIU Yanhui,et al. A numerical simulation for the molten pool of laser cladding on titanium alloy[J]. Applied Laser,2019,39(3):381-386. [12] LEE Y S,NORDIN M,BABU S S,et al. Influence of fluid convection on weld pool formation in laser cladding[J]. Weld. J,2014,93(8):292-300. [13] GAN Z T,YU G,HE X,et al. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel[J]. International Journal of Heat and Mass Transfer,2017,104:28-38. [14] TSENG C C,LI C J. Numerical investigation of interfacial dynamics for the melt pool of Ti-6Al-4V powders under a selective laser[J]. International Journal of Heat and Mass Transfer,2019,134:906-919. [15] SHAO J,YU G,HE X,et al. Grain size evolution under different cooling rate in laser additive manufacturing of superalloy[J]. Optics & Laser Technology,2019(119):105662. [16] LIU S,SHIN Y C. Integrated 2D cellular automata-phase field modeling of solidification and microstructure evolution during additive manufacturing of Ti6Al4V[J]. Computational Materials Science,2020(183):109889. [17] SEREDYNSKI M,BANASZEK R. Front tracking based macroscopic calculations of columnar and equiaxed solidification of a binary alloy[J]. Journal of Heat Transfer,2010,132(10):369-380. [18] PINOMAA T,PROVATAS N. Quantitative phase field modeling of solute trapping and continuous growth kinetics in quasi-rapid solidification[J]. Acta Materialia,2019,168:167-177. [19] WU X H,WANG G,ZHAO L Z,et al. Phase field simulation of dendrite growth in binary Ni-Cu alloy under the applied temperature gradient[J]. Computational Materials Science,2016(117):286-293. [20] HATAYAMA T,NATSUME Y,OHSASA K. Evaluation of dendrite structure in alloys[J]. Tetsu-to-Hagane,2017,103(12):695-702. [21] ZHAO Y,ZHANG B,HOU H,et al. Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process[J]. Journal of Materials Science & Technology,2019,35(6):1044-1052. [22] SONG B X,YU T B,JIANG X Y,et al. Development of the molten pool and solidification characterization in single bead multilayer direct energy deposition[J]. Additive Manufacturing,2022(49):102479. [23] WANG S,LI F,WEIGUNY A. Algebraic dynamics and time-dependent dynamical symmetry of nonautonomous systems[J]. Physics Letters A,1993,180(3):189-196. [24] WARREN J A,BOETTINGER W J. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[J]. Acta Metallurgica et Materialia,1995,43(2):689-703. [25] YU T B,SONG B X,XI W C,et al. Parametric study and optimization of fe-based alloy powder laser cladding of stainless steel[J]. Lasers in Engineering,2019(44). [26] SONG B X,YU T B,JIANG X Y,et al. Numerical model of transient convection pattern and forming mechanism of molten pool in laser cladding[J]. Numerical Heat Transfer Applications,2019,75(12):855-873. [27] GALE W F,TOTEMEIER T C. Smithells metals reference book[M]. Oxford and Burlington:Elsvier Butterworth-Heinimann,2003. [28] LEE Y,NORDIN M,BABU S S,et al. Effect of fluid convection on dendrite arm spacing in laser deposition[J]. Metallurgical and Materials Transactions B,2014,45(4):1520-1529. [29] MATSUURA K,OHMI T,KUDOH M,et al. Dispersion strengthening in a hypereutectic Al-Si alloy prepared by extrusion of rapidly solidified powder[J]. Metallurgical and Materials Transactions A,2004,35(1),333-339. [30] HARDESTY F. ASM Handbook-properties and selection:Nonferrous alloys and pure metals[M]. Ohio:ASM International,1990. [31] WALDEMAR M G,OSCAR T D,CÉSAR C J,et al. Effect of porosity on the tensile properties of low ductility aluminum alloys[J]. Materials Research,2004,7(2):221-229. [32] 宋梦华. 激光立体成形2Cr13不锈钢的成形特性与组织性能[D]. 西安:西北工业大学,2016. SONG Menghua. Processing characteristics,macro/microstructures and mechanical properties of laser solidforming 2cr13 stainless steel[D]. Xi'an:Northwestern Polytechnical University,2016. |