• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (12): 272-283.doi: 10.3901/JME.2023.12.272

• 材料科学与工程 • 上一篇    下一篇

扫码分享

全位置焊接熔池的深度学习检测方法

马晓锋1,2, 夏攀1,2, 刘海生1,2, 史铁林3, 王中任1,2   

  1. 1. 湖北文理学院机械工程学院 襄阳 441053;
    2. 智能制造与机器视觉襄阳市重点实验室 襄阳 441053;
    3. 华中科技大学机械科学与工程学院 武汉 430074
  • 收稿日期:2022-07-30 修回日期:2023-04-09 出版日期:2023-06-20 发布日期:2023-08-15
  • 通讯作者: 王中任(通信作者),男,1974年出生,博士,教授,硕士研究生导师。主要研究方向为智能制造、机器视觉与智能焊接。E-mail:wzrvision@hbuas.edu.cn
  • 作者简介:马晓锋,男,1997年出生。主要研究方向为机器视觉与智能焊接。E-mail:mxf15571177591@126.com
  • 基金资助:
    襄阳市重点科技计划(2020ABH002033)和国家自然科学基金(11902112)资助项目。

Deep Learning Detection Method of All-position Welding Pool

MA Xiaofeng1,2, XIA Pan1,2, LIU Haisheng1,2, SHI Tielin3, WANG Zhongren1,2   

  1. 1. School of Mechanical Engineering, Hubei University of Arts and Sciences, Xiangyang 441053;
    2. Xiangyang Key Laboratory of Intelligent Manufacturing and Machine Vision, Xiangyang 441053;
    3. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuahan 430074
  • Received:2022-07-30 Revised:2023-04-09 Online:2023-06-20 Published:2023-08-15

摘要: 在熔化极活性气体保护焊(Metal active gas arc welding,MAG)焊接过程中,传统机器视觉熔池检测方法难以适应剧烈变化的强弧光和飞溅等噪声的干扰。为此,提出一种结合GAN与改进PSPNet的熔池深度学习检测方法,实现对熔池的动态跟踪与精准检测。首先,通过生成对抗网络(Generative adversarial networks,GAN)中的解码器、编码器及小步数的反卷积模块,对焊接熔池图像进行增强,解决因强弧光和飞溅等噪声导致的图像模糊。然后,对不同位置的熔池形态进行力学现象分析,得出不同位置的熔池形成规律。最后,结合GAN网络与全位置熔池变化规律,对PSPNet网络进行改进,利用多层金字塔池化模块进行信息提取、空洞卷积大视野的获取全局信息、以及引入的Swish激活函数,对熔池进行动态分割。试验结果表明,该方法平均像素准确率和平均交并比等指标提高至88.03%和85.45%,网络模型训练时间比改进前提升19.05%,能够实现熔池动态跟踪,对机器人智能焊接有重要意义。

关键词: 熔化极活性气体保护焊, GAN, 改进PSPNet, 熔池动态分割

Abstract: In the process of MAG Welding, the traditional Welding pool detection method is difficult to adapt to the intense Arc light due to the serious interference of arc light and splash light. A fusion pool de-noising detection method combining GAN and improved PSPNet is proposed to realize dynamic tracking and accurate detection of the fusion pool. Firstly, the image of welding pool is denoised by generating decoder, encoder and small step deconvolution module in adversity-network (GAN), and the image blur caused by shielding gas and arc light is solved. Subsequently, the formation regularity of the molten pool at different positions is obtained by analyzing the mechanical phenomena of the molten pool at different positions. Finally, combined with GAN network denoising and all-position molten pool change law, PSPNet network is improved. Multi-layer pyramid pooling module is used to extract information, global information is obtained by cavity convolution large field, and Swish activation function is introduced to dynamically segment molten pool. Experimental results show that the average pixel accuracy and average intersection ratio of the method are improved to 88.03% and 85.45%, and the training time of the network model is improved by 19.05% compared with that before the improvement. Dynamic tracking of weld pool is realized which is of great significance to of robotic intelligent welding.

Key words: metal active gas arc welding, GAN, improvement of PSPNet, weld pool dynamic segmentation

中图分类号: