机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 289-311.doi: 10.3901/JME.2024.07.289
李坤1,2,3, 吉辰1,2, 白生文3, 蒋斌3, 潘复生3
收稿日期:
2023-06-15
修回日期:
2023-12-19
出版日期:
2024-04-05
发布日期:
2024-06-07
通讯作者:
李坤,男,1988年出生,博士,教授,博士研究生导师。主要研究方向为金属材料增材制造及智能制造。E-mail:kun.li@cqu.edu.cn
作者简介:
蒋斌,男,1975年出生,博士,教授,博士研究生导师。主要研究方向为镁合金材料及智能加工。E-mail:jiangbinrong@cqu.edu.cn
基金资助:
LI Kun1,2,3, JI Chen1,2, BAI Shengwen3, JIANG Bin3, PAN Fusheng3
Received:
2023-06-15
Revised:
2023-12-19
Online:
2024-04-05
Published:
2024-06-07
摘要: 高性能镁合金已成为运载装备轻量化的重要发展方向之一,而镁合金因其自身活泼的性质和较差的室温加工性,在传统制造技术中受到了很大限制。最近电弧增材制造技术因其沉积速率高、制造空间大、成形稳定、过程安全等特点成为高性能镁合金先进制备的重要手段之一。因此,系统综述了目前电弧增材制造镁合金的研究现状,重点综述了目前电弧增材制造技术以及其沉积态镁合金在成形、组织与性能上的特点。同时针对镁合金在制备过程中的热循环、热累积、性能薄弱等问题,总结了制备过程中的原位加工、镁合金焊丝设计、电弧成形精度控制与热处理优化等研究与现状。并根据已有研究指出了电弧增材制造镁合金存在的瓶颈问题并提出该领域需要发展与改进的方向。
中图分类号:
李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311.
LI Kun, JI Chen, BAI Shengwen, JIANG Bin, PAN Fusheng. Research Status and Prospects of Wire-arc Additive Manufacturing Technology for High-performance Magnesium Alloys[J]. Journal of Mechanical Engineering, 2024, 60(7): 289-311.
[1] YANG Hong,CHEN Xianhua,HUANG Guangsheng,et al. Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites:Review and perspective[J]. Journal of Magnesium and Alloys,2022,10(9):2311-2333. [2] LI Y,ZHOU J,PAVANRAM P,et al. Additively manufactured biodegradable porous magnesium[J]. Acta Biomaterialia,2018,67:378-392. [3] KAUSHIK V,NITHISH K B,SAKTHI K S,et al. Magnesium role in additive manufacturing of biomedical implants-challenges and opportunities[J]. Additive manufacturing,2022,55:102802. [4] YANG Yan,XIONG Xiaoming,CHEN Jing,et al. Research advances in magnesium and magnesium alloys worldwide in 2020[J]. Journal of Magnesium and Alloys,2021,9(3):705-747. [5] SONG Jiangfeng,CHEN Jing,XIONG Xiaoming,et al. Research advances of magnesium and magnesium alloys worldwide in 2021[J]. Journal of Magnesium and Alloys,2022,10(4):863-898. [6] LI Kun,JI Chen,BAI Shengwen,et al. Selective laser melting of magnesium alloys:Necessity,formability,performance,optimization and applications[J]. Journal of Materials Science & Technology,2023,154:65-93. [7] ZHANG Wanneng,WANG Linzhi,FENG Zhongxue,et al. Research progress on selective laser melting (SLM) of magnesium alloys:A review[J]. Optik,2020,207:163842. [8] LONG Teng,ZHANG Xiaohong,HUANG Qianli,et al. Novel Mg-based alloys by selective laser melting for biomedical applications:Microstructure evolution,microhardness and in vitro degradation behaviour[J]. Virtual and Physical Prototyping,2017,13(2):71-81. [9] DONG J,LI Y,LIN P,et al. Solvent-cast 3D printing of magnesium scaffolds[J]. Acta Biomaterialia,2020,114:497-514. [10] 李落星,周佳,张辉. 车身用铝、镁合金先进挤压成形技术及应用[J]. 机械工程学报,2012,48(18):35-43. LI Luoxing,ZHOU Jia,ZHANG Hui. Advanced extrusion technology and application of aluminium,magnesium alloy for vehicle body[J]. Journal of Mechanical Engineering,2012,48(18):35-43. [11] ZHENG Dongdong,LI Zhuo,JIANG Yiling,et al. Effect of multiple thermal cycles on the microstructure evolution of GA151K alloy fabricated by laser-directed energy deposition[J]. Additive Manufacturing,2022,57:102957. [12] DENG Qingchen,WU Yujuan,WU Qianye,et al. Microstructure evolution and mechanical properties of a high-strength Mg-10Gd-3Y-1Zn-0.4Zr alloy fabricated by laser powder bed fusion[J]. Additive Manufacturing,2022,49:102517. [13] XIANG K,MOJTABA S,KIT O,et al. Insights into the influence of oxide inclusions on corrosion performance of additive manufactured magnesium alloys[J]. NPJ Materials Degradation,2022,6(1):932. [14] XU Tiancai,YANG Yan,PENG Xiaodong,et al. Overview of advancement and development trend on magnesium alloy[J]. Journal of Magnesium and Alloys,2019,7(3):536-544. [15] TAN Qiyang,YIN Yu,MO Ning,et al. Recent understanding of the oxidation and burning of magnesium alloys[J]. Surface Innovations,2019,7(2):71-92. [16] TAN Qiyang,ATRENS A,MO N,et al. Oxidation of magnesium alloys at elevated temperatures in air:A review[J]. Corrosion Science,2016,112:734-759. [17] SU S F,HUANG J C,LIN H K,et al. Electron-beam welding behavior in Mg-Al-based alloys[J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2002,33(5):1461-1473. [18] AYDIN D.,BAYINDIR Z,HOSEINI M,et al. The high temperature oxidation and ignition behavior of Mg-Nd alloys part I:The oxidation of dilute alloys[J]. Journal of Alloys and Compounds,2013,569:35-44. [19] 宋刚,赵爽,李涛涛,等. 镁合金与钢异质材料焊接的研究进展[J]. 机械工程学报,2020,56(8):1-12. SONG Gang,ZHAO Shuang,LI Taotao,et al. Research progress on welding of magnesium alloy and steel dissimilar materials[J]. Journal of Mechanical Engineering,2020,56(8):1-12. [20] MASOOD C,TEKUMALLA S,GUPTA M,et al. Designing highly ductile magnesium alloys:Current status and future challenges[J]. Critical Reviews in Solid State and Materials Sciences,2021,47(2):194-281. [21] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151,159. LIU Wei,LI Neng,ZHOU Biao,et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151,159. [22] LIANG Jingwei,LEI Zhenglong,CHEN Yanbin,et al. Formability,microstructure,and thermal crack characteristics of selective laser melting of ZK60 magnesium alloy[J]. Materials Science and Engineering:A,2022,839:142858. [23] LI Kun,MA Ruijin,ZHANG Ming. Hybrid post-processing effects of magnetic abrasive finishing and heat treatment on surface integrity and mechanical properties of additively manufactured Inconel 718 superalloys[J]. Journal of Materials Science & Technology,2022,128:10-21. [24] CHEN Qiaoyu,JING Yongbin,YIN Jie,et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science,2021,372(6545):932. [25] ZHANG Jingqi,LIU Yingang,SHA Gang,et al. Designing against phase and property heterogeneities in additively manufactured titanium alloys[J]. Nature Communications,2022,13(1):4660. [26] 史玉升,伍宏志,闫春泽,等. 4D打印——智能构件的增材制造技术[J]. 机械工程学报,2020,56(15):1-25. SHI Yusheng,WU Hongzhi,YAN Chunze,et al. Four-dimensional printing-the additive manufacturing technology of intelligent components[J]. Journal of Mechanical Engineering,2020,56(15):1-25. [27] NIE Xiaojia,CHEN Ze,QI Yang,et al. Laser additive manufacturing of Mg-based composite with improved degradation behaviour[J]. Virtual and Physical Prototyping,2020,15(3):278-293. [28] GANGIREDDY S,GWALANI B,LIU Kaimiao,et al. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy[J]. Additive manufacturing,2019,26:53-64. [29] YUSOP A H M,ALSAKKAF A,KADIR M R A,et al. Corrosion of porous Mg and Fe scaffolds:A review of mechanical and biocompatibility responses[J]. Corrosion Engineering Science and Technology,2021,56(4):310-326. [30] LI Kun,MA Ruijin,QIN Yu,et al. A review of the multi-dimensional application of machine learning to improve the integrated intelligence of laser powder bed fusion[J]. Journal of Materials Processing Technology,2023,318:118032. [31] ZHAN Jianbin,WU Jinzhou,MA Ruijin,et al. Effect of microstructure on the superelasticity of high-relative-density Ni-rich NiTi alloys fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology,2023,317:117988. [32] NILESH K,HET B,MAHESH P V S,et al. Wire arc additive manufacturing -a revolutionary method in additive manufacturing[J]. Materials Chemistry and Physics,2022,285:126144. [33] MANU S,SANDEEP R,ANKIT T,et al. Wire arc additive manufacturing of metals:A review on processes,materials and their behaviour[J]. Materials Chemistry and Physics,2023,294:126988. [34] LI Kun,CHEN Wen,GONG N,et al. A critical review on wire-arc directed energy deposition of high-performance steels[J]. Journal of Materials Research and Technology,2023,24:9369-9412. [35] PARDAL G,MARTINA F,WILLIAMS S. Laser stabilization of GMAW additive manufacturing of Ti-6Al-4V components[J]. Journal of Materials Processing Technology,2019,272:1-8. [36] JIA Y Z,XIAO J,CHEN S J,et al. Pulsed laser enhanced metal transfer of aluminum alloy in GMAW[J]. Optics and Lasers in Engineering,2019,121:29-36. [37] ZHANG Zhifen,WEN Guangrui,CHEN Shanben. Audible sound-based intelligent evaluation for aluminum alloy in robotic pulsed GTAW:Mechanism,feature selection,and defect detection[J]. IEEE Transactions on Industrial Informatics,2018,14(7):2973-2983. [38] KE W,OLIVEIRA J P,CONG B,et al. Multi-layer deposition mechanism in ultra high-frequency pulsed wire arc additive manufacturing (WAAM) of NiTi shape memory alloys[J]. Additive Manufacturing,2022,50:102513. [39] ALLAVIKUTTY R,GUPTA P,SANTRA T S,et al. Additive manufacturing of Mg alloys for biomedical applications:Current status and challenges[J]. Current Opinion in Biomedical Engineering,2021,18:100276. [40] BAI Xingwang,COLEGROVE P,DING Jialuo,et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer,2018,124:504-516. [41] WANG Lin,ZHANG Yuelong,HUA Xueming,et al. Twin-wire plasma arc additive manufacturing of the Ti-45Al titanium aluminide:Processing,microstructures and mechanical properties[J]. Intermetallics,2021,136:107277. [42] YI Hao,WANG Qiao,CAO Huajun. Wire-arc directed energy deposition of magnesium alloys:Microstructure,properties and quality optimization strategies[J]. Journal of Materials Research and Technology,2022,20:627-649. [43] KAI R T,VOLKER W. The current state of research of wire arc additive manufacturing (WAAM):A review[J]. Applied Sciences-Basel,2021,11(18):8619. [44] TOMAR B,SHIVA S. Cold metal transfer-based wire arc additive manufacturing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2023,45(3):157. [45] WU Bintao,PAN Zengxi,DING Donghong,et al. A review of the wire arc additive manufacturing of metals:Properties,defects and quality improvement[J]. Journal of Manufacturing Processes,2018,35:127-139. [46] CADIOU S,COURTOIS M,CARIN M,et al. 3D heat transfer,fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (CMT-WAAM)[J]. Additive Manufacturing,2020,36:101541. [47] DING Donghong,PAN Zengxi,CUIURI D,et al. Wire-feed additive manufacturing of metal components:Technologies,developments and future interests[J]. International Journal of Advanced Manufacturing Technology,2015,81(1-4):465-481. [48] PICKIN C G,YOUNG K. Evaluation of cold metal transfer (CMT) process for welding aluminium alloy[J]. Science and Technology of Welding and Joining,2006,11(5):583-585. [49] MAO Hao,JING Chenchen,KONG Fuxiang,et al. Improve the manufacturing efficiency of steel bars by using hot-wire pulse arc additive manufacturing[J]. Journal of Manufacturing Processes,2023,89:430-443. [50] ABE T,SASAHARA H. Layer geometry control for the fabrication of lattice structures by wire and arc additive manufacturing[J]. Additive Manufacturing,2019,28:639-648. [51] PAN Jiangang,YUAN Bo,GE Jinguo,et al. Influence of arc mode on the microstructure and mechanical properties of 5356 aluminum alloy fabricated by wire arc additive manufacturing[J]. Journal of Materials Research and Technology,2022,20:1893-1907. [52] DUDKO D A,KORNIENKO A N. Thermal efficiency of fusion process in plasma arc welding[J]. Automatic Welding Ussr,1968,21(7):19-26. [53] RÄNNAR L E,GLAD A,GUSTAFSON C G. Efficient cooling with tool inserts manufactured by electron beam melting[J]. Rapid Prototyping Journal,2007,13(3):128-135. [54] UNOCIC R R,DUPONT J N. Process efficiency measurements in the laser engineered net shaping process[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science,2004,35(1):143-152. [55] ZHANG Xing,YOCOM C J,MAO Bo,et al. Microstructure evolution during selective laser melting of metallic materials:A review[J]. Journal of Laser Applications,2019,31(3):031201. [56] WEI Kaiwen,WANG Zemin,ZENG Xiaoyan. Influence of element vaporization on formability,composition,microstructure,and mechanical performance of the selective laser melted Mg-Zn-Zr components[J]. Materials Letters,2015,156:187-190. [57] LIU Chang,ZHANG Min,CHEN Changjun. Effect of laser processing parameters on porosity,microstructure and mechanical properties of porous Mg-Ca alloys produced by laser additive manufacturing[J]. Materials Science and Engineering:A,2017,703:359-371. [58] RíOS S,COLEGROVE P A,MARTINA F,et al. Analytical process model for wire+arc additive manufacturing[J]. Additive Manufacturing,2018,21:651-657. [59] TAKAGI H,SASAHARA H,ABE T,et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing[J]. Additive Manufacturing,2018,24:498-507. [60] TONG Xin,WU Guohua,EASTON MARK A,et al. Microstructural evolution and strengthening mechanism of Mg-Y-RE-Zr alloy fabricated by quasi-directed energy deposition[J]. Additive Manufacturing,2023,67:103487. [61] FANG XI,YANG J,WANG S,et al. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion[J]. Additive Manufacturing,2020,33:101123. [62] BÄR F,BERGER L,JAUER L,et al. Laser additive manufacturing of biodegradable magnesium alloy WE43:A detailed microstructure analysis[J]. Acta Biomaterialia,2019,98:36-49. [63] NAEMI A. Z,LUCAS J,LISA C,et al. Additive manufactured WE43 magnesium:A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43[J]. Materials Characterization,2019,147:384-397. [64] HAN Seungkyu,MATTHEW Z,DAVID M,et al. Optimization of AZ91D process and corrosion resistance using wire arc additive manufacturing[J]. Applied Sciences-Basel,2018,8(8):1306. [65] XU Gang,WU Runbao,LUO Kaiyu,et al. Effects of arc oscillation on microstructure and mechanical properties of AZ31 magnesium alloy prepared by CMT wire-arc directed energy deposition[J]. Materials Science and Engineering:A,2023,864:144539. [66] JING Guo,ZHOU Yong,LIU Changmeng,et al. Wire arc additive manufacturing of AZ31 magnesium alloy:Grain refinement by adjusting pulse frequency[J]. Materials,2016,9(10):823. [67] HU S,ZHANG H,WANG Z,et al. The arc characteristics of cold metal transfer welding with AZ31 magnesium alloy wire[J]. Journal of Manufacturing Processes,2016,24:298-306. [68] GUAN S.,SOLBERG K.,WAN D.,et al. Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi high entropy alloy[J]. Materials & Design,2019,184:108202. [69] GUO Enyu,SHUAI Sansan,KAZANTSEV D,et al. The influence of nanoparticles on dendritic grain growth in Mg alloys[J]. Acta Materialia,2018,152:127-137. [70] SHUAI Cijun,HE Chongxian,FENG Pei,et al. Biodegradation mechanisms of selective laser-melted Mg-xAl-Zn alloy:Grain size and intermetallic phase[J]. Virtual and Physical Prototyping,2017,13(2):59-69. [71] ABE T,KANEKO J,SASAHARA H. Thermal sensing and heat input control for thin-walled structure building based on numerical simulation for wire and arc additive manufacturing[J]. Additive Manufacturing,2020,35:101357. [72] ALDALUR E,VEIGA F,SUÁREZ A,et al. High deposition wire arc additive manufacturing of mild steel:Strategies and heat input effect on microstructure and mechanical properties[J]. Journal of Manufacturing Processes,2020,58:615-626. [73] LI Xinzhi,FANG Xuewei,ZHANG Mugong,et al. Improved strength-ductility synergy of directed energy deposited AZ31 magnesium alloy with cryogenic cooling mode[J]. Virtual and Physical Prototyping,2023,18(1):126144. [74] GUO Yangyang,QUAN Gaofeng,JIANG Yinglong,et al. Formability,microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding[J]. Journal of Magnesium and Alloys,2021,9(1):192-201. [75] GUO Yangyang,PAN Houhong,REN Lingbao et al. Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy[J]. Materials Letters,2019,247:4-6. [76] YANG Xu,LIU Jianrui,WANG Zhennan,et al. Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process[J]. Materials Science and Engineering:A,2020,774. [77] SINDO K. Welding metallurgy[M]. USA:John Wiley & Son.,2002. [78] FANG Xuewei,YANG Jiannan,WANG Shuaipeng,et al. Additive manufacturing of high performance AZ31 magnesium alloy with full equiaxed grains:Microstructure,mechanical property,and electromechanical corrosion performance[J]. Journal of Materials Processing Technology,2022,300:117430 [79] XIN Lin,LI Yanmin,WANG Meng,et al. Columnar to equiaxed transition during alloy solidification[J]. Science in China Series E-Technological Sciences,2003,46(5):475-489. [80] WANG Zihong,WANG Jingfeng,LIN Xin,et al. Solidification microstructure evolution and its correlations with mechanical properties and damping capacities of Mg-Al-based alloy fabricated using wire and arc additive manufacturing[J]. Journal of Materials Science & Technology,2023,144:28-44. [81] KURZ W,GIOVANOLA B,TRIVEDI R. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica,1986,34(5):823-830. [82] HUNT J D. Steady-state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering,1984,65(1):75-83. [83] GäUMANN M,TRIVEDI R,KURZ W. Nucleation ahead of the advancing interface in directional solidification[J]. Materials Science and Engineering:A,1997,226-228:763-769. [84] LI Hongge,HUANG Yongjiang,JIANG Songshan,et al. Columnar to equiaxed transition in additively manufactured CoCrFeMnNi high entropy alloy[J]. Materials & Design,2021,197:109262. [85] ZHANG Chen,LI Yufei,GAO Ming,et al. Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source[J]. Materials Science and Engineering:A,2018,711:415-423. [86] KLEIN T,ARNOLDT A,SCHNALL M,et al. Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy[J]. Jom,2021,73(4):1126-1134. [87] WANG Jianbin,ZHAO Zhanyong,DU Wenbo,et al. Macro-micro numerical simulation and experimental study of Mg-Gd-Y-Zn-Zr alloy fabricated by cold metal transfer wire arc additive manufacturing[J]. Journal of Materials Research and Technology,2023,23:403-418. [88] WANG P,ZHANG H Z,ZHU H,et al. Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source:Processing,microstructure,and mechanical behavior[J]. Journal of Materials Processing Technology,2021,288. [89] GUO Angyang,QUAN Gaofeng,CELIKIN M,et al. Effect of heat treatment on the microstructure and mechanical properties of AZ80M magnesium alloy fabricated by wire arc additive manufacturing[J]. Journal of Magnesium and Alloys,2022,10(7):1930-1940. [90] CAO Qianhui,ZENG Caiyou,QI Bojin,et al. Excellent isotropic mechanical properties of directed energy deposited Mg-Gd-Y-Zr alloys via establishing homogeneous equiaxed grains embedded with dispersed nano-precipitation[J]. Additive Manufacturing,2023,67:103498. [91] WEI Jingxun,HE Changshu,QIE Mofan,et al. Achieving high performance of wire arc additive manufactured Mg-Y-Nd alloy assisted by interlayer friction stir processing[J]. Journal of Materials Processing Technology,2023,311:117809. [92] LI Jianwei,QIU Youmin,YANG Junjie,et al. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution[J]. Journal of Magnesium and Alloys,2023,11(1):217-229. [93] BEN HAMU G,ELIEZER D,WAGNER L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J]. Journal of Alloys and Compounds,2009,468(1-2):222-229. [94] JIANG I B,XIANG I Q,ATRENS A,et al. Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets[J]. Corrosion Science,2017,126:374-380. [95] NAGAMATSU H,SASAHARA H. Improvement of Cooling effect and dimensional accuracy of wire and arc additive manufactured magnesium alloy by active-cooling-based contacting copper blocks[J]. Journal of Manufacturing and Materials Processing,2022,6(2). [96] SCHARF-WILDENHAIN R,HAELSIG A,HENSEL J,et al. Influence of heat control on properties and residual stresses of additive-welded high-strength steel components[J]. Metals,2022,12(6):951. [97] HYEJEONG PARK,KIHUN NAM,JUNSIK LEE. Lessons from aluminum and magnesium scraps fires and explosions:Case studies of metal recycling industry[J]. Journal of Loss Prevention in the Process Industries,2022,80:104872. [98] PALANIVEL S,NELATURU P,GLASS B,et al. Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy[J]. Materials & Design,2015,65:934-952. [99] VGORNYAKOALERIY V,SUN Yongle,DING Jialuo,et al. Modelling and optimising hybrid process of wire arc additive manufacturing and high-pressure rolling[J]. Materials & Design,2022,223:111121. [100] RODRIGUES T A,DUARTE V,MIRANDA R M,et al. Current status and perspectives on wire and arc additive manufacturing (WAAM)[J]. Materials,2019,12(7):1121. [101] GUO Tingting,SISKA F,CHENG Jun,et al. Initiation of basal slip and tensile twinning in magnesium alloys during nanoindentation[J]. Journal of Alloys and Compounds,2018,731:620-630. [102] ZHU Gaoming,WANG Leyun,ZHOU Hao,et al. Improving ductility of a Mg alloy via non-basal slip induced by Ca addition[J]. International Journal of Plasticity,2019,120:164-179. [103] GNEIGER S,ÖSTERREICHER J A,ARNOLDT A R,et al. Development of a high strength magnesium alloy for wire arc additive manufacturing[J]. Metals,2020,10(6):778. [104] CAI Xiaoyu,CHEN Fukang,DONG Bolun,et al. Microstructure and mechanical properties of GTA-based wire arc additive manufactured AZ91D magnesium alloy[J]. Journal of Magnesium and Alloys,2022,3(32):1-13. [105] JI Bi,SHEN Junqi,HU Shengsun,et al. Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing[J]. Materials Letters,2020,276:128185. [106] LUO Qun,GUO Yanlin,BIN Liu,et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys:A critical review[J]. Journal of Materials Science & Technology,2020,44:171-190. [107] YUAN Xiaochi,LIU Mengna,WEI Kaiwen,et al. Defect,microstructure and mechanical properties of Mg-Gd binary alloy additively manufactured by selective laser melting[J]. Materials Science and Engineering:A,2022,850:143572. [108] HU Pengfei,HUANG Junsen,ZENG Min. Application of fuzzy control method in gas metal arc welding[J]. International Journal of Advanced Manufacturing Technology,2017,92(5-8):1769-1775. [109] WANG Z,ZIMMER C,LÉONARD F,et al. Improvement strategy for the geometric accuracy of bead's beginning and end parts in wire-arc additive manufacturing (WAAM)[J]. International Journal of Advanced Manufacturing Technology,2022,118(7-8):2139-2151. [110] LIU Xing,POLDEN O J,PAN Zengxi. A defect detection system for wire arc additive manufacturing using incremental learning[J]. Journal of Industrial Information Integration,2022,27:100291. [111] REISGEN U,MANN S,OSTER L,et al. Study on workpiece and welding torch height control for polydirectional WAAM by means of image processing[C]//2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). Vancouver,BC,Canada,IEEE Press. 2019:6-11:6-10 [112] YI Wangming,XU Xingwang,ZHAO Zhuang,et al. Coordinated monitoring and control method of deposited layer width and reinforcement in WAAM process[J]. Journal of Manufacturing Processes,2021,71:306-316. [113] LI Kun,ZHAN Jianbin,ZHANG Ming. A functionally graded material design from stainless steel to Ni-based superalloy by laser metal deposition coupled with thermodynamic prediction[J]. Materials & Design,2022,217:110612. [114] XU Gang,WU Runbao,LUO Kaiyu,et al. Effects of heat treatment on hot corrosion behavior of directed energy deposited In718/316L functionally graded material[J]. Corrosion Science,2022,197:110068. [115] MA Tao,ZHAO Sicong,GUO Erjun,et al. Microstructure evolution and strengthening mechanism analysis of novel Mg-Re-Ag alloy during heat treatment[J]. Journal of Materials Research and Technology,2022,21:692-703. |
[1] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[2] | 孔玲, 王玉辉, 杨浩坤, 彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展[J]. 机械工程学报, 2024, 60(8): 34-47. |
[3] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[4] | 任志英, 黄子豪, 方荣政, 王秦伟, 莫继良, 秦红玲. 金属橡胶无序式网格互穿结构的热力学性能研究[J]. 机械工程学报, 2024, 60(8): 165-175. |
[5] | 杨思愚, 徐连勇, 赵雷, 韩永典. EH36钢焊接接头预腐蚀下的疲劳性能及断裂机制研究[J]. 机械工程学报, 2024, 60(8): 204-211. |
[6] | 王优强, 徐莹, 莫君, 何彦, 赵涛, 倪陈兵. 磁场作用下水基磁流体对TC4与Si3N4摩擦学性能影响的实验研究[J]. 机械工程学报, 2024, 60(7): 174-183. |
[7] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[8] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[9] | 刘振宇, 张楠, 裘辿, 谭建荣. 基于小样本数据增广的产品服役性能预测方法[J]. 机械工程学报, 2024, 60(6): 11-20. |
[10] | 鲍鑫宇, 麻永林, 程桥, 苏怡卉, 王杰, 邢淑清. 脉冲磁场熔体处理对Al-Si-Mg-Cu-Ni合金DC铸造凝固组织和力学性能的影响[J]. 机械工程学报, 2024, 60(6): 279-286. |
[11] | 刘常海, 赵志学, 胡敏, 燕浩, 杨庆俊, 包钢, 曾亿山. 基于负载口独立的液压式波浪能转换器捕获性能研究[J]. 机械工程学报, 2024, 60(6): 386-397. |
[12] | 周祖意, 杨玉维, 齐文耀, 龚健超, 李照童. 腰部外骨骼机器人多刚-柔体动力学等效逆解方法研究及其性能优化综合[J]. 机械工程学报, 2024, 60(5): 107-118. |
[13] | 杨树财, 韩佩, 佟欣, 刘献礼, 张晓辉. 刀具介观几何特征成形技术及其作用研究[J]. 机械工程学报, 2024, 60(5): 317-351. |
[14] | 田边, 刘江江, 张仲恺, 刘兆钧, 马荣, 林启敬, 蒋庄德. 基于多节点阵列结构的高精度薄膜温度传感器研究[J]. 机械工程学报, 2024, 60(4): 92-100. |
[15] | 丁孺琦, 熊文杰, 程敏, 徐兵. 智能化阀口独立电液控制系统安全性能评估[J]. 机械工程学报, 2024, 60(4): 101-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||