机械工程学报 ›› 2024, Vol. 60 ›› Issue (7): 312-333.doi: 10.3901/JME.2024.07.312
陈伟1,2, 赵杰3, 朱利斌4, 曹海波1
收稿日期:
2023-04-11
修回日期:
2023-09-29
出版日期:
2024-04-05
发布日期:
2024-06-07
通讯作者:
赵杰,男,1981年出生,硕士,主要研究方向为增材制造技术应用。E-mail:22877101@qq.com
作者简介:
陈伟,男,1990年出生,博士研究生。主要研究方向为低活化钢的增材制造技术。E-mail:waam96@163.com
基金资助:
CHEN Wei1,2, ZHAO Jie3, ZHU Libin4, CAO Haibo1
Received:
2023-04-11
Revised:
2023-09-29
Online:
2024-04-05
Published:
2024-06-07
摘要: 低活化铁素体/马氏体(Reduced activation ferritic/martensitic, RAFM)钢是目前较成熟的聚变堆结构材料,具有低活化特性的纳米氧化物弥散强化(Oxide dispersion strengthened, ODS)钢兼具辐照稳定性和良好的高温强度,是最有发展前途的聚变堆结构材料。概述了增材制造技术在聚变堆结构材料领域应用的典型案例。围绕热输入量、扫描策略、打印尺寸、粉末特性、热处理优化等方面分析了增材制造RAFM钢微观组织调控和力学性能优化的研究进展。评述了增材制造低活化ODS钢粉末制备、缺陷控制以及纳米相调控的研究策略。最后,总结了增材制造RAFM钢存在的机遇和低活化ODS钢面临的挑战,对其发展趋势和技术难点进行了展望。
中图分类号:
陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333.
CHEN Wei, ZHAO Jie, ZHU Libin, CAO Haibo. Research Progress on Additive Manufacturing of Low Activation Steels[J]. Journal of Mechanical Engineering, 2024, 60(7): 312-333.
[1] BARBARINO M. A brief history of nuclear fusion[J]. Nature Physics,2020,16(9):890-893. [2] KNASTER J,MOESLANG A,MUROGA T. Materials research for fusion[J]. Nature Physics,2016,12(5):424-434. [3] GILBERT M R,FORREST R A. Comprehensive handbook of activation data calculated using EASY-2003[J]. Fusion Engineering and Design,2006,81(8):1511-1516. [4] CHEN J,LIU C,WEI C,et al. Study on microstructure and mechanical properties of direct diffusion bonded low-carbon RAFM steels[J]. Journal of Manufacturing Processes,2019,43:192-199. [5] HIRATA A,FUJITA T,WEN Y R,et al. Atomic structure of nanoclusters in oxide-dispersion-strengthened steels[J]. Nature Materials,2011,10(12):922-926. [6] TANIGAWA H,SHIBA K,MöSLANG A,et al. Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket[J]. Journal of Nuclear Materials,2011,417(1):9-15. [7] POITEVIN Y,AUBERT P,DIEGELE E,et al. Development of welding technologies for the manufacturing of European Tritium Breeder blanket modules[J]. Journal of Nuclear Materials,2011,417(1):36-42. [8] MASSEY C P,DRYEPONDT S N,EDMONDSON P D,et al. Multiscale investigations of nanoprecipitate nucleation,growth,and coarsening in annealed low-Cr oxide dispersion strengthened FeCrAl powder[J]. Acta Materialia,2019,166:1-17. [9] 李涤尘,贺健康,田小永,等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报,2013,49(6):129-135. LI Dichen,HE Jiankan,TIAN Xiaoyong,et al. Additive manufacturing:Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering,2013,49(6):129-135. [10] DEBROY T,WEI H L,ZUBACK J S,et al. Additive manufacturing of metallic components-Process,structure and properties[J]. Progress in Materials Science,2018,92:112-224. [11] ASTM F2792-12a. Standard Terminology for Additive Manufacturing Technologies[S]. United States:2013. [12] YIN Y,TAN Q,BERMINGHAM M,et al. Laser additive manufacturing of steels[J]. International Materials Reviews,2021,67(5):487-573. [13] ABOULKHAIR N T,SIMONELLI M,PARRY L,et al. 3D printing of aluminium alloys:Additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science,2019,106:100578. [14] YEOM H,SRIDHARAN K. Cold spray technology in nuclear energy applications:A review of recent advances[J]. Annals of Nuclear Energy,2021,150:107835. [15] FENG K,WANG X,FENG Y,et al. Current progress of Chinese HCCB TBM program[J]. Fusion Engineering and Design,2016,109-111:729-735. [16] NEUBERGER H,REY J,MATERNA-MORRIS E,et al. Progress in the KIT approach for development of the HCPB TBM stiffening plate feasibility mock up fabrication[J]. Fusion Engineering and Design,2013,88(5):265-270. [17] NEUBERGER H,HERNANDEZ F,REY J,et al. Fabrication of HCPB breeding blanket components using the additive manufacturing processes of selective laser melting and cold spray[J]. Fusion Engineering and Design,2020,160:112026. [18] 黄群英,凤麟团队. 中国抗中子辐照钢的抗辐照设计与验证[J]. 原子能科学技术,2019,53(10):1856-1867. HUANG Qunying,FDS Team. Design and verification of irradiation resistance property of china low activation martensitic steel[J]. Atomic Energy Science and Technology,2019,53(10):1856-1867. [19] 吴世凯,张建超,廖洪彬,等. 聚变堆低活化铁素体/马氏体(RAFM)钢焊接研究进展[J]. 机械工程学报,2019,55(2):195-203. WU Shikai,ZHANG Jianchao,LIAO Hongbin,et al. Review on welding technology of RAFM steel[J]. Journal of Mechanical Engineering,2019,55(2):195-203. [20] LUO T,ZHONG Y. Potential application of laser solid forming technology for fabrication of breeding blanket[J]. Fusion Engineering and Design,2012,87(2):128-133. [21] ORDÁS N,ARDILA L C,ITURRIZA I,et al. Fabrication of TBMs cooling structures demonstrators using additive manufacturing (AM) technology and HIP[J]. Fusion Engineering and Design,2015,96-97:142-148. [22] NEUBERGER H,REY J,HEES M,et al. Selective laser sintering as manufacturing process for the realization of complex nuclear fusion and high heat flux components[J]. Fusion Science and Technology,2017,72(4):667-672. [23] KOEHLY C,NEUBERGER H,BÜHLER L. Fabrication of thin-walled fusion blanket components like flow channel inserts by selective laser melting[J]. Fusion Engineering and Design,2019,143:171-179. [24] HERNÁNDEZ F A,PERESLAVTSEV P,ZHOU G,et al. Advancements in the helium-cooled pebble bed breeding blanket for the EU DEMO:Holistic design approach and lessons learned[J]. Fusion Science and Technology,2019,75(5):352-364. [25] NEUBERGER H,REY J,ARBEITER F,et al. Evaluation of conservative and innovative manufacturing routes for gas cooled test blanket module and breeding blanket first walls[J]. Fusion Engineering and Design,2019,146:2140-2143. [26] NEUBERGER H,HERNANDEZ F,RUCK S,et al. Advances in additive manufacturing of fusion materials[J]. Fusion Engineering and Design,2021,167:112309. [27] ARBEITER F,BACHMANN C,CHEN Y,et al. Thermal-hydraulics of helium cooled First Wall channels and scoping investigations on performance improvement by application of ribs and mixing devices[J]. Fusion Engineering and Design,2016,109-111:1123-1129. [28] NORAJITRA P,BASUKI W W,GONZALEZ M,et al. Development of sandwich flow channel inserts for an EU DEMO dual coolant blanket concept[J]. Fusion Science and Technology,2015,68(3):501-506. [29] RAPISARDA D,FERNANDEZ I,PALERMO I,et al. Status of the engineering activities carried out on the European DCLL[J]. Fusion Engineering and Design,2017,124:876-881. [30] 陈伟. CMT电弧增材制造TC4钛合金组织及力学性能调控[D]. 南昌:南昌航空大学,2019. CHEN Wei. Microstructure and mechanical property control of CMT arc additive manufacturing TC4 titanium alloy[D]. Nanchang:Nanchang Hangkong University,2019. [31] LIPPOLD J,KOTECKI D. Welding metallurgy and weldability of stainless steel[M]. New Jersey:Wiley-VCH,2005. [32] LIPPOLD J C. Transformation and tempering behavior of 12Cr-1Mo-0.3V martensitic stainless steel weldments[J]. Journal of Nuclear Materials,1981,104:1127-1131. [33] SRIDHARAN N,GUSSEV M N,FIELD K G. Performance of a ferritic/martensitic steel for nuclear reactor applications fabricated using additive manufacturing[J]. Journal of Nuclear Materials,2019,521:45-55. [34] MUKHERJEE T,DEBROY T,LIENERT T J,et al. Spatial and temporal variation of hardness of a printed steel part[J]. Acta Materialia,2021,209:116775. [35] SRIDHARAN N,FIELD K. A road map for the advanced manufacturing of ferritic-martensitic steels[J]. Fusion Science and Technology,2019,75(4):264-274. [36] BARBA D,ALABORT C,TANG Y T,et al. On the size and orientation effect in additive manufactured Ti-6Al-4V[J]. Materials & Design,2020,186:108235. [37] ROBERTS I A,WANG C J,ESTERLEIN R,et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J]. International Journal of Machine Tools and Manufacture,2009,49(12):916-923. [38] SHI Y,LU Z,REN Y,et al. Microstructure and tensile properties of laser engineered net shaped reduced activation ferritic/martensitic steel[J]. Materials Characterization,2018,144:554-562. [39] ZHU G,SHI S,FU G,et al. The influence of the substrate-inclined angle on the section size of laser cladding layers based on robot with the inside-beam powder feeding[J]. The International Journal of Advanced Manufacturing Technology,2017,88(5):2163-2168. [40] AN Q,XIA Z X,ZHANG C,et al. Effect of thermal cycles on microstructure of reduced activation steel fabricated using laser melting deposition[J]. Journal of Iron and Steel Research International,2021,28(3):316-326. [41] 徐加超,夏志新,陈鹏,等. 中空环形激光热源建模及温度场有限元模拟[J]. 中国激光,2021,48(17):31-40. XU Jiachao,XIA Zhixin,CHEN Peng,et al. Modeling of hollow ring laser heat source and finite element simulation of temperature field[J]. Chinese Journal of Lasers,2021,48(17):31-40. [42] XIA Z,XU J,SHI J,et al. Microstructure evolution and mechanical properties of reduced activation steel manufactured through laser directed energy deposition[J]. Additive Manufacturing,2020,33:101114. [43] JIANG M G,CHEN Z W,TONG J D,et al. Strong and ductile reduced activation ferritic/martensitic steel additively manufactured by selective laser melting[J]. Materials Research Letters,2019,7(10):426-432. [44] LIU C Y,TONG J D,JIANG M G,et al. Effect of scanning strategy on microstructure and mechanical properties of selective laser melted reduced activation ferritic/martensitic steel[J]. Materials Science and Engineering:A,2019,766:138364. [45] JIANG M,LIU C,CHEN Z,et al. Enhanced strength-ductility synergy of selective laser melted reduced activation ferritic/martensitic steel via heterogeneous microstructure modification[J]. Materials Science and Engineering:A,2021,801:140424. [46] BONK S,NEUBERGER H,BECKERS D,et al. Additive manufacturing technologies for EUROFER97 components[J]. Journal of Nuclear Materials,2021,548:152859. [47] TAN L,SNEAD L L,KATOH Y. Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors[J]. Journal of Nuclear Materials,2016,478:42-49. [48] SAWADA K,TANEIKE M,KIMURA K,et al. Effect of nitrogen content on microstructural aspects and creep behavior in extremely low carbon 9Cr heat-resistant steel[J]. ISIJ International,2004,44(7):1243-1249. [49] LEE T,AOYAGI K,BIAN H,et al. The microstructure and mechanical properties of selective electron beam melting manufactured 9-12Cr ferritic/martensitic steel using N- and Ar-atomized powder[J]. Additive Manufacturing,2021,45:102075. [50] SINGH A,KAPIL S,DAS M. A comprehensive review of the methods and mechanisms for powder feedstock handling in directed energy deposition[J]. Additive Manufacturing,2020,35:101388. [51] FENG J,ZHANG P,JIA Z,et al. Microstructures and mechanical properties of reduced activation ferritic/martensitic steel fabricated by laser melting deposition[J]. Fusion Engineering and Design,2021,173:112865. [52] WU Q S,ZHENG S H,HUANG Q Y,et al. Continuous cooling transformation behaviors of CLAM steel[J]. Journal of Nuclear Materials,2013,442:S67-S70. [53] GRÄNING T,SRIDHARAN N. Benchmarking a 9Cr-2WVTa reduced activation ferritic martensitic steel fabricated via additive manufacturing[J]. Metals,2022,12:342. [54] BONK S,DüRRSCHNABEL M,NEUBERGER H,et al. Microstructural features in additively manufactured EUROFER97 components[J]. Fusion Engineering and Design,2021,173:112813. [55] ZHAI Y,HUANG B,MAO X,et al. Effect of hot isostatic pressing on microstructure and mechanical properties of CLAM steel produced by selective laser melting[J]. Journal of Nuclear Materials,2019,515:111-121. [56] HUANG B,ZHAI Y,LIU S,et al. Microstructure anisotropy and its effect on mechanical properties of reduced activation ferritic/martensitic steel fabricated by selective laser melting[J]. Journal of Nuclear Materials,2018,500:33-41. [57] LEE T,BIAN H,AOYAGI K,et al. Fabricating 9-12 Cr ferritic/martensitic steels using selective electron beam melting[J]. Materials Letters,2020,271:127747. [58] KLUEH R L,NELSON A T. Ferritic/martensitic steels for next-generation reactors[J]. Journal of Nuclear Materials,2007,371(1):37-52. [59] LI K,KLECKA M A,CHEN S,et al. Wire-arc additive manufacturing and post-heat treatment optimization on microstructure and mechanical properties of Grade 91 steel[J]. Additive Manufacturing,2021,37:101734. [60] ZINKLE S J,SNEAD L L. Designing Radiation Resistance in Materials for Fusion Energy[J]. Annual Review of Materials Research,2014,44:241-267. [61] TAN L,BUSBY J T. Formulating the strength factor α for improved predictability of radiation hardening[J]. Journal of Nuclear Materials,2015,465:724-730. [62] CARROLL B E,PALMER T A,BEESE A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia,2015,87:309-320. [63] CHEN W,CHEN Y,ZHANG T,et al. Effects of location on the microstructure and mechanical properties of Cu-8Al-2Ni-2Fe-2Mn alloy produced through wire arc additive manufacturing[J]. Journal of Materials Engineering and Performance,2020,29:4733-4744. [64] ZHANG D,QIU D,GIBSON M A,et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature,2019,576(7785):91-95. [65] 陈伟,陈玉华,温涛涛,等. 超声振动对电弧增材制造铝青铜合金组织和拉伸性能的影响[J]. 中国有色金属学报,2020,30(10):2280-2294. CHEN Wei,CHEN Yuhua,WEN Taotao,et al. Effect of ultrasonic vibration on microstructure and tensile properties of aluminum bronze alloy produced by wire arc additive manufacturing[J]. The Chinese Journal of Nonferrous Metals,2020,30(10):2280-2294. [66] CHEN W,CHEN Y,ZHANG T,et al. Effect of ultrasonic vibration and interpass temperature on microstructure and mechanical properties of Cu-8Al-2Ni-2Fe-2Mn alloy fabricated by wire arc additive manufacturing[J]. Metals,2020,10(2):215. [67] 崔忠圻,覃耀春. 金属学与热处理[M]. 北京:机械工业出版社,2004. CUI Zhongqi,TAN Yaochun. Metallography & heat treatment[M]. Beijing:China Machine Press,2004. [68] SHANG Z,DING J,FAN C,et al. Tailoring the strength and ductility of T91 steel by partial tempering treatment[J]. Acta Materialia,2019,169:209-224. [69] LIU S,HUANG Q,PENG L,et al. Microstructure and its influence on mechanical properties of CLAM steel[J]. Fusion Engineering and Design,2012,87(9):1628-1632. [70] KELLER C,MARGULIES M M,HADJEM-HAMOUCHE Z,et al. Influence of the temperature on the tensile behaviour of a modified 9Cr-1Mo T91 martensitic steel[J]. Materials Science and Engineering:A,2010,527(24):6758-6764. [71] ZINKLE S J,BOUTARD J L,HOELZER D T,et al. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications[J]. Nuclear Fusion,2017,57(9):092005. [72] MATERNA-MORRIS E,MöSLANG A,SCHNEIDER H C. Tensile and low cycle fatigue properties of EUROFER97-steel after 16.3DPA neutron irradiation at 523,623 and 723K[J]. Journal of Nuclear Materials,2013,442:S62-S66. [73] HUANG Q. Development status of CLAM steel for fusion application[J]. Journal of Nuclear Materials,2014,455(1):649-654. [74] HUANG B,ZHANG J,WU Q. Microstructure and mechanical properties of China low activation martensitic steel joint by TIG multi-pass welding with a new filler wire[J]. Journal of Nuclear Materials,2017,490:115-124. [75] 束德林. 工程材料力学性能[M]. 2版. 北京:机械工业出版社,2007. SHU Delin. Mechanical properties of engineering materials[M]. 2nd ed. Beijing:China Machine Press,2007. [76] 许德,高华兵,董涛,等. 增材制造用金属粉末研究进展[J]. 中国有色金属学报,2021,31(02):245-257. XU De,GAO Huabing,DONG Tao,et al. Research progress of metal powder for additive manufacturing[J]. The Chinese Journal of Nonferrous Metals,2021,31(2):245-257. [77] 郑聃,李瑞迪,宋波,等. NiTi气雾化制粉工艺对选区激光熔化成型性、制件超弹性的影响[J]. 机械工程学报,2020,56(15):104-109. ZHENG Dan,LI Ruidi,SONG Bo,et al. Effect of NiTi powder gas atomization process on the selective laser melting moldability and alloys' superelastic[J]. Journal of Mechanical Engineering,2020,56(15):104-109. [78] SHI Y,LU Z,YU L,et al. Microstructure and tensile properties of Zr-containing ODS-FeCrAl alloy fabricated by laser additive manufacturing[J]. Materials Science and Engineering:A,2020,774:138937. [79] ZHONG Y,LIU L,ZOU J,et al. Oxide dispersion strengthened stainless steel 316L with superior strength and ductility by selective laser melting[J]. Journal of Materials Science & Technology,2020,42:97-105. [80] DOÑATE-BUENDIA C,STREUBEL R,KÜRNSTEINER P,et al. Effect of nanoparticle additivation on the microstructure and microhardness of oxide dispersion strengthened steels produced by laser powder bed fusion and directed energy deposition[J]. Procedia CIRP,2020,94:41-45. [81] WILMS M B,STREUBEL R,FRÖMEL F,et al. Laser additive manufacturing of oxide dispersion strengthened steels using laser-generated nanoparticle-metal composite powders[J]. Procedia CIRP,2018,74:196-200. [82] DOñATE-BUENDIA C,KüRNSTEINER P,STERN F,et al. Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders[J]. Acta Materialia,2021,206:116566. [83] WALKER J C,BERGGREEN K M,JONES A R,et al. Fabrication of Fe-Cr-Al oxide dispersion strengthened PM2000 alloy using selective laser melting[J]. 2009,11(7):541-546. [84] BOEGELEIN T,DRYEPONDT S N,PANDEY A,et al. Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting[J]. Acta Materialia,2015,87:201-215. [85] VASQUEZ E,GIROUX P-F,LOMELLO F,et al. Elaboration of oxide dispersion strengthened Fe-14Cr stainless steel by selective laser melting[J]. Journal of Materials Processing Technology,2019,267:403-413. [86] ZHAI W,ZHOU W,NAI S M L,et al. Characterization of nanoparticle mixed 316 L powder for additive manufacturing[J]. Journal of Materials Science & Technology,2020,47:162-168. [87] SHI Y,LU Z,XU H,et al. Microstructure characterization and mechanical properties of laser additive manufactured oxide dispersion strengthened Fe-9Cr alloy[J]. Journal of Alloys and Compounds,2019,791:121-133. [88] DOÑATE-BUENDÍA C,FRÖMEL F,WILMS M B,et al. Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites[J]. Materials & Design,2018,154:360-369. [89] CHANG H J,CHO H Y,KIM J H. Stability of Y-Ti-O nanoparticles during laser melting of advanced oxide dispersion-strengthened steel powder[J]. Journal of Alloys and Compounds,2015,653:528-533. [90] ARKHURST B M,BAE J H,NA M Y,et al. Effect of tellurium on the microstructure and mechanical properties of Fe-14Cr oxide-dispersion-strengthened steels produced by additive manufacturing[J]. Journal of Materials Science & Technology,2021,95:114-126. [91] GAO R,ZENG L,DING H,et al. Characterization of oxide dispersion strengthened ferritic steel fabricated by electron beam selective melting[J]. Materials & Design,2016,89:1171-1180. [92] PRAT O,GARCIA J,ROJAS D,et al. Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels:Experimental and DICTRA calculations[J]. Acta Materialia,2010,58(18):6142-6153. [93] MAGNUSSON H,SANDSTRÖM R. The role of dislocation climb across particles at creep conditions in 9 to 12 Pct Cr steels[J]. Metallurgical and Materials Transactions A,2007,38(10):2428-2434. [94] 卢秉恒. 增材制造技术-现状与未来[J]. 中国机械工程,2020,31(1):19-23. LU Bingheng. Additive manufacturing-Current situation and future[J]. China Mechanical Engineering,2020,31(1):19-23. [95] 叶凯,梁风,姚耀春,等. 热等离子体制备与球化超细难熔金属粉的研究进展[J]. 中国有色金属学报,2020,30(9):2011-2021. YE Kai,LIANG Feng,YAO Yaochun,et al. Research progress of preparing and spheroidizing ultrafine refractory metal powder by thermal plasma[J]. The Chinese Journal of Nonferrous Metals,2020,30(9):2011-2021. [96] ALINGER M J,ODETTE G R,HOELZER D T. The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys[J]. Journal of Nuclear Materials,2004,329-333:382-386. [97] LIU T,WANG L,WANG C,et al. Feasibility of using Y2Ti2O7 nanoparticles to fabricate high strength oxide dispersion strengthened Fe-Cr-Al steels[J]. Materials & Design,2015,88:862-870. [98] WU Y,ZHAO H,LI J,et al. Effects of Y4Zr3O12 addition on the microstructure and mechanical properties of Fe-15Cr-2W-0.35Ti ODS steels[J]. Materials Science and Engineering:A,2021,804:140734. |
[1] | 孔玲, 王玉辉, 杨浩坤, 彭艳. Fe-Mn-Al-C系奥氏体基低密度钢使役性能研究进展[J]. 机械工程学报, 2024, 60(8): 34-47. |
[2] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
[3] | 任志英, 黄子豪, 方荣政, 王秦伟, 莫继良, 秦红玲. 金属橡胶无序式网格互穿结构的热力学性能研究[J]. 机械工程学报, 2024, 60(8): 165-175. |
[4] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
[5] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
[6] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[7] | 鲍鑫宇, 麻永林, 程桥, 苏怡卉, 王杰, 邢淑清. 脉冲磁场熔体处理对Al-Si-Mg-Cu-Ni合金DC铸造凝固组织和力学性能的影响[J]. 机械工程学报, 2024, 60(6): 279-286. |
[8] | 杜军, 王谦元, 何冀淼, 张永恒, 魏正英. TIG电弧辅助熔滴沉积增材制造中熔滴偏距对熔池形貌的影响机制研究[J]. 机械工程学报, 2024, 60(5): 219-230. |
[9] | 周甜, 蔡力勋, 韩光照. 用于延性材料力学性能测定的圆柱平面-小冲杆试验新方法与应用[J]. 机械工程学报, 2024, 60(4): 316-325. |
[10] | 崔桂涵, 杨春利. 基于高强高韧焊丝的脉冲GMAW焊缝金属强韧化机理研究[J]. 机械工程学报, 2024, 60(4): 326-334. |
[11] | 马艺星, 杨蔚涛, 关肖虎, 杨旗, 赵同新. TWIP钢/IF钢热轧复合板材的微观结构和界面结合性能[J]. 机械工程学报, 2024, 60(4): 345-356. |
[12] | 高强, 王健, 张严, 郑旭阳, 吕昊, 殷国栋. 拓扑优化方法及其在运载工程中的应用与展望[J]. 机械工程学报, 2024, 60(4): 369-390. |
[13] | 蒋周明矩, 熊异, 王柏村. 面向工业5.0的人机协作增材制造[J]. 机械工程学报, 2024, 60(3): 238-253. |
[14] | 石毅磊, 权银洙, 许海鹰, 王壮, 马文龙, 彭勇. 丝束同轴冷阴极电子枪电子束注腰位置影响因素分析[J]. 机械工程学报, 2024, 60(3): 328-336. |
[15] | 唐九兴, 石磊, 武传松, 吴明孝, 高嵩. 中厚板铝/铜异种金属双面搅拌摩擦接头微观组织与力学性能[J]. 机械工程学报, 2024, 60(20): 88-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||