[1] 杨华勇,张斌,徐兵.轴向柱塞泵/马达技术的发展演变[J].机械工程学报,2008,44(10):1-8.YANG Huayong,ZHANG Bin,XU Bing. Development of axial piston pump/motor technology[J]. Journal of Mechanical Engineering,2008,44(10):1-8. [2] 高英杰,孔祥东.基于小波包分析的液压泵状态监测方法[J].机械工程学报,2009,45(8):80-88.GAO Yingjie, KONG Xiangdong. Wavelet packets analysis based method for hydraulic pump condition monitoring[J]. Journal of Mechanical Engineering,2009,45(8):80-88. [3] 杨东亚,李伟涛,李振宇,等.高压柱塞泵摩擦副研究现状与展望[J].液压气动与密封,2022,42(5):1-7.YANG Dongya,LI Weitao,LI Zhenyu,et al. Present situation and forecasting of fraction pairs for high pressure piston pump[J]. Hydraulic Pneumatics & Seals,2022,42(5):1-7. [4] 周汝胜,焦宗夏,王少萍.液压系统故障诊断技术的研究现状与发展趋势[J].机械工程学报,2006,42(9):6-14.ZHOU Rusheng, JIAO Zongxia, WANG Shaoping.Research status and development trend of hydraulic system fault diagnosis[J]. Journal of Mechanical Engineering,2006,42(9):6-14. [5] DU J, WANG S, ZHANG H. Layered clustering multi-fault diagnosis for hydraulic piston pump[J].Mechanical Systems & Signal Processing,2013,36(2):487-504. [6] 陈章位,吕红兵,路甬祥. Wigner谱理论及其在柱塞泵故障诊断中的应用[J].中国机械工程,1992,3(4):4-6,3.CHEN Zhangwei,LÜ Hongbing,LU Yongxiang. Wigner spectrum theory and its application in piston pump fault diagnosis[J]. China Mechanical Engineering,1992,3(4):4-6,3. [7] 王少萍,苑中魁,杨光琴.液压泵信息融合故障诊断[J].中国机械工程,2005,16(4):327-331.WANG Shaoping,YUAN Zhongkui,YANG Guangqin.Study on fault diagnosis of data fusion in hydraulic pump[J]. China Mechanical Engineering,2005,16(4):327-331. [8] 赵四军,王少萍,吴柯锐.基于粗糙集和支持向量机的航空液压泵故障诊断[J].中北大学学报,2010,31(3):238-242.ZHAO Sijun, WANG Shaoping, WU Kerui. Fault diagnosis based on rough set and support vector machines for aero hydraulic pump[J]. Journal of North University of China,2010,31(3):238-242. [9] 姜万录,王益群.混沌振子在液压泵故障诊断中的应用[J].机床与液压,1999(5):52-53,83.JIANG Wanlu,WANG Yiqun. Application of chaotic oscillator in fault diagnosis of hydraulic pump[J].Machine Tool & Hydraulics,1999(5):52-53,83. [10] 高强,向家伟,汤何胜.基于增强聚类分割与L-峭度的Teager能量算子解调诊断轴向柱塞泵故障[J].机械工程学报,2018,54(18):1-10.GAO Qiang,XIANG Jiawei,TANG Hesheng. Axial piston pump fault diagnosis with Teager energy operator demodulation using improved clustering-based segmentation and L-kurtosis[J]. Journal of Mechanical Engineering,2018,54(18):1-10. [11] KUMAR A,TANG H,VASHISHTHA G,et al. Noise subtraction and marginal enhanced square envelope spectrum (MESES) for the identification of bearing defects in centrifugal and axial pump[J]. Mechanical Systems and Signal Processing,2022,165:108366. [12] 雷亚国,贾峰,孔德同,等.大数据下机械智能故障诊断的机遇与挑战[J].机械工程学报,2018,54(5):94-104.LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94-104. [13] ZHAO W,WANG Z,MA J,et al. Fault diagnosis of a hydraulic pump based on the CEEMD-STFT time-frequency entropy method and multiclass SVM classifier[J]. Shock and Vibration,2016,2016:2609856. [14] LU C,WANG S,ZHANG C. Fault diagnosis of hydraulic piston pumps based on a two-step EMD method and fuzzy C-means clustering[C]//Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,230(16):2913-2928. [15] 姜万录,刘思远.多特征信息融合的贝叶斯网络故障诊断方法研究[J].中国机械工程,2010,21(8):940-945.JIANG Wanlu,LIU Siyuan. Fault diagnosis approach study of Bayesian networks based on multi-characteristic information fusion[J]. China Mechanical Engineering,2010,21(8):940-945. [16] XIAO C,TANG H,REN Y,et al. Adaptive MOMEDA based on improved advance-retreat algorithm for fault features extraction of axial piston pump[J]. ISA Transactions,2022,128(Part B):503-520. [17] HE Y,TANG H,REN Y,et al. A deep multi-signal fusion adversarial model based transfer learning and residual network for axial piston pump fault diagnosis[J].Measurement,2022,192:110889. [18] 王登铭.基于PSO-BP神经网络的柱塞泵故障诊断方法的研究[D].南京:东南大学,2018.WANG Dengming. Research on fault diagnosis method of axial piston pump based on PSO-BP neural network[D].Nanjing:Southeast University,2018. [19] TANG S,ZHU Y,YUAN S. Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization[J]. ISA Transactions, 2022,129(Part A):555-563. [20] LAN Y,HU J,HUANG J,et al. Fault diagnosis on slipper abrasion of axial piston pump based on extreme learning machine[J]. Measurement,2018,124:378-385. [21] ZHANG J,GAO R X. Deep learning-driven data curation and model interpretation for smart manufacturing[J].Chinese Journal of Mechanical Engineering,2021,34(1):1-21. [22] ZHAO Z,WU J,LI T,et al. Challenges and opportunities of AI-enabled monitoring,diagnosis & prognosis:A review[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-29. [23] 王辉,徐佳文,严如强.基于多尺度注意力深度强化学习网络的行星齿轮箱智能诊断方法[J].机械工程学报,2022,58(11):133-142.WANG Hui,XU Jiawen,YAN Ruqiang. Multi-scale attention based deep reinforcement learning for intelligent fault diagnosis of planetary gearbox[J]. Journal of Mechanical Engineering,2022,58(11):133-142. [24] 董绍江,裴雪武,吴文亮,等.基于多层降噪技术及改进卷积神经网络的滚动轴承故障诊断方法[J].机械工程学报,2021,57(1):148-156.DONG Shaojiang,PEI Xuewu,WU Wenliang,et al.Rolling bearing fault diagnosis method based on multilayer noise reduction technology and improved convolutional neural network[J]. Journal of Mechanical Engineering,2021,57(1):148-156. [25] ZHAO Z,LI T,WU J,et al. Deep learning algorithms for rotating machinery intelligent diagnosis:An open source benchmark study[J]. ISA Transactions, 2020, 107:224-255. [26] WOO S,PARK J,LEE JY,et al. CBAM:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018:3-19. |