• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (4): 178-188.doi: 10.3901/JME.2024.04.178

• 特邀专栏:智能液压元件及系统基础技术 • 上一篇    下一篇

扫码分享

基于深度信念网络多参数智能融合的滑靴副性能退化状态评估方法

刘思远1,2,3, 艾超1,2,3, 郁春嵩1,2,3, 张伟哲1,2,3, 陈文婷1,2,3, 康伟4   

  1. 1. 燕山大学河北省重型机械流体动力传输与控制实验室 秦皇岛 066004;
    2. 燕山大学先进锻压成形技术与科学教育部重点实验室 秦皇岛 066004;
    3. 燕山大学机械工程学院 秦皇岛 066004;
    4. 中国人民解放军 95092 部队 开封 475000
  • 收稿日期:2023-05-01 修回日期:2023-11-02 出版日期:2024-02-20 发布日期:2024-05-25
  • 通讯作者: 陈文婷,女,1990年出生,博士。主要研究方向为液压型风力发电机组控制技术。E-mail:went_chen@ysu.edu.cn
  • 作者简介:刘思远,男,1981年出生,博士,教授。主要研究方向为液压基础元件。E-mail:liusiyuan@ysu.edu.cn
  • 基金资助:
    国家自然科学基金(52275069,52175065); 河北省自然科学基金(E2022203041,E2021203020)资助项目

Evaluation Method of Slipper Pair Performance Degradation State Based on Multi-parameter Intelligent Fusion of Deep Belief Network

LIU Siyuan1,2,3, AI Chao1,2,3, YU Chunsong1,2,3, ZHANG Weizhe1,2,3, CHEN Wenting1,2,3, KANG Wei4   

  1. 1. Hebei Province Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004;
    2. Key Laboratory of Advanced Forging&Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004;
    3. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004;
    4. Chinese People's Liberation Army Unit 95092, Kaifeng 475000
  • Received:2023-05-01 Revised:2023-11-02 Online:2024-02-20 Published:2024-05-25

摘要: 滑靴副磨损过程的性能退化状态受到表面形貌、摩擦特性等多个方面的影响,单独提取其中任何一个表征参数作为指标,评估其性能退化状态都是不准确的,为提高评估精度,提出基于深度信念网络多参数智能融合的滑靴副性能退化状态评估方法。应用分形理论从滑靴表面形貌特征中提取分形维数、尺度系数和特征粗糙度等分形参数作为表面形貌评估指标,应用摩擦因数作为摩擦特性参数评估指标,构建性能退化状态评估指标体系;计算摩擦因数信号与完全平稳的高斯白噪声序列信号之间的灰色关联度,并根据灰色关联度的大小对性能退化状态进行区域划分;应用深度信念网络理论对多指标参数进行智能融合和特征提取,建立性能退化状态评估模型;开展滑靴副磨损过程模拟试验,分析指标参数和灰色关联度对性能退化状态的影响规律,通过构建出的样本数据集,对评估模型进行训练和测试验证,结果表明评估模型对性能退化状态的评估准确率能够达到97%以上,由此证实该方法对滑靴副性能退化状态评估的有效性,且具有较高的评估精度。

关键词: 滑靴副, 性能退化状态评估, 分形理论, 深度信念网络

Abstract: The performance degradation state of the wear process of the slipper pair is affected by many aspects such as surface morphology and friction characteristics. It is inaccurate to extract any one of the characteristic parameters as indicators to evaluate its performance degradation state. In order to improve the evaluation accuracy, a multi-parameter intelligent fusion method based on deep belief network is proposed to evaluate the performance degradation state of the slipper pair. Fractal parameters such as fractal dimension, scale coefficient and characteristic roughness are extracted from the surface topography of slipper by fractal theory, and friction coefficient is used as the evaluation index of friction characteristics to construct the evaluation index system of performance degradation state. The gray correlation degree between the friction coefficient signal and the completely stationary Gaussian white noise sequence signal is calculated, and the degradation state is divided into regions according to the gray correlation degree. Deep belief network theory is applied to perform intelligent fusion and feature extraction of multiple index parameters, and a performance degradation state assessment model is established. The simulation test of slipper wear process is carried out to analyze the influence rule of index parameters and gray correlation degree on performance degradation state. The evaluation model is trained and tested through the constructed sample data set. The results show that the evaluation accuracy of the model for performance degradation state can reach more than 97%, which verifies the effectiveness and high accuracy of the method for performance degradation state evaluation of slipper pair.

Key words: slipper pair, performance degradation status assessment, fractal theory, deep belief network

中图分类号: