机械工程学报 ›› 2024, Vol. 60 ›› Issue (3): 83-108.doi: 10.3901/JME.2024.03.083
刘怀举, 陈地发, 朱才朝, 吴吉展, 魏沛堂
收稿日期:
2023-02-11
修回日期:
2023-08-22
出版日期:
2024-02-05
发布日期:
2024-04-28
通讯作者:
刘怀举,男,1986年出生,教授、博士研究生导师。主要研究方向为高性能机械传动。E-mail:huaijuliu@cqu.edu.cn
基金资助:
LIU Huaiju, CHEN Difa, ZHU Caichao, WU Jizan, WEI Peitang
Received:
2023-02-11
Revised:
2023-08-22
Online:
2024-02-05
Published:
2024-04-28
摘要: 齿轮弯曲疲劳性能是现代齿轮传动的关键设计指标,也是影响高端齿轮装备服役性能和可靠性的关键因素。尽管齿轮弯曲疲劳研究取得显著进展,但由于基础数据建设、抗疲劳制造、主动设计方法等方面与国外先进水平存在差距,限制了我国高性能齿轮传动产品性能。结合文献调研、行业交流与课题研究经验,详述了齿轮弯曲疲劳的研究进展与发展趋势,重点介绍了齿轮弯曲疲劳的失效机理、理论分析、试验技术、承载能力、影响因素等内容,归纳了提升齿轮弯曲疲劳性能的有效措施,期望推动我国齿轮抗疲劳技术的发展与应用。
中图分类号:
刘怀举, 陈地发, 朱才朝, 吴吉展, 魏沛堂. 齿轮弯曲疲劳的研究进展与发展趋势[J]. 机械工程学报, 2024, 60(3): 83-108.
LIU Huaiju, CHEN Difa, ZHU Caichao, WU Jizan, WEI Peitang. State-of-art and Trend of Gear Bending Fatigue Studies[J]. Journal of Mechanical Engineering, 2024, 60(3): 83-108.
[1] SEABROOK J B, DUDLEY D W. Results of a fifteen-year program of flexural fatigue testing of gear teeth[J]. Journal of Engineering for Industry, 1964, 86(3):221-237. [2] LU Z, LIU H, ZHANG R, et al. The simulation and experiment research on contact fatigue performance of acetal gears[J]. Mechanics of Materials, 2021, 154:103719. [3] ZHANG B, LIU H, BAI H, et al. Ratchetting-multiaxial fatigue damage analysis in gear rolling contact considering tooth surface roughness[J]. Wear, 2019, 428-429:137-146. [4] LIU H, LIU H, ZHU C, et al. Study on gear contact fatigue failure competition mechanism considering tooth wear evolution[J]. Tribology International, 2020, 147:106277. [5] LIU H, LIU H, ZHU C, et al. Influence of load spectrum on contact fatigue damage of a case carburized wind turbine gear[J]. Engineering Failure Analysis, 2021, 119:105005. [6] WEI P, ZHOU H, LIU H, et al. Modeling of contact fatigue damage behavior of a wind turbine carburized gear considering its mechanical properties and microstructure gradients[J]. International Journal of Mechanical Sciences, 2019, 156:283-296. [7] MANDA P, SINGH S, SINGH A K. Failure analysis of cooler fan drive gear system of helicopter[J]. Materials Today:Proceedings, 2018, 5(2):5254-5261. [8] FENG W, FENG Z, MAO L. Failure analysis of a secondary driving helical gear in transmission of electric vehicle[J]. Engineering Failure Analysis, 2020, 117:104934. [9] YAN H, WEI P, ZHOU P, et al. Experimental investigation of crack growth behaviors and mechanical properties degradation during gear bending fatigue[J]. Journal of Mechanical Science and Technology, 2022, 36(3):1233-1242. [10] ISO 6336-3:2019 Calculation of load capacity of spur and helical gears-Part3:Calculation of tooth bending strength[S]. Geneva:International Standard Organization, 2019. [11] AGMA 2101-D04 Fundamental rating factors and calculation methods for involute spur and helical gear teeth[S]. Virginia:American Gear Manufacturers Association, 2016. [12] DIN 3990-3-1987 Calculation of load capacity of cylindrical gears; calculation of tooth strength[S]. Berlin:German Institute for Standardization, 2016. [13] 国国家市场监督管理总局,国家标准化管理委员会. GB/T 3480.3-2021直齿轮和斜齿轮承载能力计算第3部分:轮齿弯曲强度计算[S].北京:中国标准出版社, 2021. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 3480.3-2021 Calculation of load capacity of spur and helical gears-Part 3:Calculation of tooth bending strength[S]. Beijing:Standards Press of China, 2021. [14] LEWIS W. Investigation of the strength of gear teeth[J]. American Machinist, 1892, 19-23. [15] OSAKUE E, ANETOR L. Revised lewis bending stress capacity model[J]. The Open Mechanical Engineering Journal, 2020, 14:1-14. [16] AGMA 908-B89 Geometry factors for determining the pitting resistance and bending strength of spur, helical and herringbone gear teeth[S]. Virginia:American Gear Manufacturers Association, 2015. [17] 吴昌林,吕云霏. ISO与AGMA渐开线圆柱齿轮强度计算标准的比较[J].中国机械工程, 2011, 22(12):1418-1423. WU Changlin, LÜ Yunfei. Comparison between ISO and AGMA gear strength rating methods for involute cylindrical gears[J]. China Mechanical Engineering, 2011, 22(12):1418-1423. [18] 吕云霏. ISO与AGMA渐开线圆柱齿轮强度计算标准比较研究[D].武汉:华中科技大学, 2011. LÜ Yunfei. Comparative study of ISO and AGMA gear strength rating methods for involute cylindrical gears[D]. Wuhan:Huazhong University of Science and Technology, 2011. [19] LISLE T J, SHAW B A, FRAZER R C. External spur gear root bending stress:A comparison of ISO 6336:2006, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques[J]. Mechanism and Machine Theory, 2017, 111:1-9. [20] LISLE T J, SHAW B A, FRAZER R C. Internal spur gear root bending stress:A comparison of ISO 6336:1996, ISO 6336:2006, VDI 2737:2005, AGMA, ANSYS finite element analysis and strain gauge techniques[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018, 233(5):1713-1720. [21] 国家市场监督管理总局,国家标准化管理委员会. GB/T 14230-2021齿轮弯曲疲劳强度试验方法[S].北京:中国标准出版社, 2021. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 14230-2021 Test method of tooth bending strength for gear load capacity[S]. Beijing:Standards Press of China, 2021. [22] SÁNCHEZ M B, PLEGUEZUELOS M, PEDRERO J I. Tooth-root stress calculation of high transverse contact ratio spur and helical gears[J]. Meccanica, 2014, 49(2):347-64. [23] 刘忠明,袁玉鹏,肖伟中,等.大模数齿条齿根应力计算方法研究及测试[J].机械工程学报, 2016, 52(23):152-159. LIU Zhongming, YUAN Yupeng, XIAO Weizhong, et al. Method of calculation and experiment of bending stress for rough module racks[J]. Journal of Mechanical Engineering, 2016, 52(23):152-159. [24] 喻永权,林超,胡亚楠.不同重合度非圆齿轮设计及弯曲应力分析[J].机械工程学报, 2022, 58(19):206-220. YU Yongquan, LIN Chao, HU Yanan. Design and bending stress analysis of non-circular gears with different contact ratio[J]. Journal of Mechanical Engineering, 2022, 58(19):206-220. [25] 张宝玉,孙铁波,李德才,等.端直面齿轮弯曲应力的解析算法与实验[J].机械设计与研究, 2023, 39(2):90-94. ZHANG Baoyu, SUN Tiebo, LI Decai, et al. Analytical algorithm of bending stress for face gears[J]. Machine Design and Research, 2023, 39(2):90-94. [26] 陈地发,刘怀举,朱加赞,等.低碳合金钢18CrNiMo7-6齿轮弯曲疲劳试验研究与误差分析[J].重庆大学学报, 2023, 44(1):1-15. CHEN Difa, LIU Huaiju, ZHU Jiazan, et al. Experimental study and error analysis on bending fatigue of low carbon alloy steel 18CrNiMo7-6 gear[J]. Journal of Chongqing University, 2023, 44(1):1-15. [27] WELLAUER E J, SEIREG A. Bending strength of gear teeth by cantilever-plate theory[J]. Journal of Engineering for Industry, 1960, 82(3):213-220. [28] HANDSCHUH R F, BIBEL G D. Experimental and analytical study of aerospace spiral bevel gear tooth fillet stresses[J]. Journal of Mechanical Design, 1999, 121(4):565-572. [29] HANDSCHUH M J, KAHRAMAN A, MILLIREN M R. Impact of tooth spacing errors on the root stresses of spur gear pairs[J]. Journal of Mechanical Design, 2014, 136(6):061010. [30] OPALIĆ M, VUČKOVIĆ K, ZEZELJ D. Effect of rotational speed on thin-rim gear bending fatigue crack initiation life[J]. Key Engineering Materials, 2011, 488-489:456-459. [31] HOTAIT M, KAHRAMAN A. Estimation of bending fatigue life of hypoid gears using a multiaxial fatigue criterion[J]. Journal of Mechanical Design, 2013, 135(10):101005. [32] LEWICKI D G, BALLARINI R. Rim thickness effects on gear crack propagation life[J]. International Journal of Fracture, 1997, 87(1):59-86. [33] LEWICKI D. Gear crack propagation path studies:guidelines for ultra-safe design[J]. Journal of the American Helicopter Society, 2001, 47:64-72. [34] LALONDE S, GUILBAULT R. Prediction of thin-rimmed gear crack propagation from a factorial design approach[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34:470-486. [35] PULIKOLLU R, BOLANDER N, SHEN T, et al. microstructure-based fatigue life prediction tool for rotorcraft spiral bevel gears[J]. Annual Forum Proceedings-AHS International, 2013, 3:1933-1942. [36] OJA M, WINK C, DEO N, et al. Gear tooth bending fatigue life prediction using integrated computational material engineering[C]//Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 6-9, 2017, Cleveland, Ohio. New York:ASME, 2017:1-7. [37] WANG W, WEI P, LIU H, et al. Damage behavior due to rolling contact fatigue and bending fatigue of a gear using crystal plasticity modeling[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(10):2736-2750. [38] HE H, ZHOU Y, LIU H, et al. Study on gear bending fatigue considering gradient characteristics:numerical analysis and experiments[J]. Engineering Fracture Mechanics, 2023, 277:108983. [39] LEI Y, YANG B, JIANG X, et al. Applications of machine learning to machine fault diagnosis:a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138:106587. [40] WANG T, WANG J B, ZHANG X J, et al. A study on prediction of process parameters of shot peen forming using artificial neural network optimized by genetic algorithm[J]. Arabian Journal for Science and Engineering, 2021, 46(8):7349-7361. [41] YANG J, KANG G, LIU Y, et al. A novel method of multiaxial fatigue life prediction based on deep learning[J]. International Journal of Fatigue, 2021, 151:106356. [42] ZHANG M, SUN C, ZHANG X, et al. High cycle fatigue life prediction of laser additive manufactured stainless steel:a machine learning approach[J]. International Journal of Fatigue, 2019, 128:105194. [43] KISHINO M, MATSUMOTO K, KOBAYASHI Y, et al. Fatigue life prediction of bending polymer films using random forest[J]. International Journal of Fatigue, 2023, 166:107230. [44] ZHANG X,GONG J,XUAN F. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions[J]. International Journal of Fatigue, 2021, 148:106236. [45] WEI X, ZHANG C, HAN S, et al. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network[J]. International Journal of Fatigue, 2022, 163:107050. [46] ZHOU T, JIANG S, HAN T, et al. A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network[J]. International Journal of Fatigue, 2023, 166:107234. [47] CHEN D, ZHU J, LIU H, et al. Experimental investigation of the relation between the surface integrity and bending fatigue strength of carburized gear[J]. SCIENCE CHINA Technological Sciences, 2022, 66:33-46. [48] STRINGER D B, DYKAS B, LABERGE K E, et al. A New high-speed, high-cycle, gear-tooth bending fatigue test capability[C]//67th Annual Forum and Technology Display, May 3-5, 2011, Virginia. American Helicopter Society, 2011:1-9. [49] CHEN T, ZHU C, LIU H, et al. Simulation and experiment of carburized gear scuffing under oil jet lubrication[J]. Engineering Failure Analysis, 2022, 139:106406. [50] ZHANG J, ZHANG Q, WU C, et al. Experimental application of pitting formation for 20MnCr5 carburized gear tooth[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(5):899-903. [51] MAO T, LIU H, WEI P, et al. An improved estimation method of gear fatigue strength based on sample expansion and standard deviation correction[J]. International Journal of Fatigue, 2022, 161:106887. [52] CONRADO E, GORLA C, DAVOLI P, et al. A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications[J]. Engineering Failure Analysis, 2017, 78:41-54. [53] GORLA C, CONRADO E, ROSA F, et al. Contact and bending fatigue behaviour of austempered ductile iron gears[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017, 232(6):998-1008. [54] LAMBERT R D, AYLOTT C J, SHAW B A. Evaluation of bending fatigue strength in automotive gear steel subjected to shot peening techniques[J]. Procedia Structural Integrity, 2018, 13:1855-1860. [55] LISLE T J, LITTLE C P, AYLOTT C J, et al. Bending fatigue strength of aerospace quality gear steels at ambient and elevated temperatures[J]. International Journal of Fatigue, 2022, 164:107125. [56] WINKLER K J, TOBIE T, STAHL K. Influence of grinding zones on the tooth root bending strength of case carburized gears[J]. Forschung im Ingenieurwesen, 2022, 86(3):661-671. [57] DOBLER F, TOBIE T, STAHL K. Influence of low temperatures on material properties and tooth root bending strength of case-hardened gears[C]//Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 2-5, 2015, Boston, Massachusetts. New York:ASME, 2015:1-9. [58] 周宏宇,刘亚南,王利辉,等.电液伺服脉动疲劳试验加载系统及其应用[J].北京工业大学学报, 2019, 45(03):205-212. ZHOU Hongyu, LIU Yanan, WANG Lihui, et al. Electro-hydraulic servo pulsating fatigue test loading system and its application[J]. Journal of Beijing University of Technology, 2019, 45(03):205-212. [59] OLSSON E, OLANDER A,ÖBERG M. Fatigue of gears in the finite life regime-experiments and probabilistic modelling[J]. Engineering Failure Analysis, 2016, 62:276-286. [60] BLAIS P, TOUBAL L. Single-gear-tooth bending fatigue of HDPE reinforced with short natural fiber[J]. International Journal of Fatigue, 2020, 141:105857. [61] BACKE D, BALLE F, EIFLER D. Fatigue testing of CFRP in the very high cycle fatigue (VHCF) regime at ultrasonic frequencies[J]. Composites Science and Technology, 2015, 106:93-99. [62] 张照智,王伟,冯帆. 40CrNi2Mo中硬调质齿轮弯曲疲劳强度试验研究[J].机械传动, 2005, 29(4):52-55. ZHANG Zhaozhi, WANG Wei, FENG Fan. Experimental study on bending fatigue strength of hardened and tempered 40CrNi2Mo gear[J]. Journal of Mechanical Transmission, 2005, 29(4):52-55. [63] 李政民卿,吴昊,朱如鹏,等.桥式四接触点背对背面齿轮弯曲应力测试机构及测试方法:中国, CN105842083B[P]. 2017-04-19. LI Zhengminqing, WU Hao, ZHU Rupeng, et al. Bridge four contact point back to back gear bending stress test mechanism and test method:China, CN105842083B[P]. 2017-04-19. [64] 王宝宾,许明中,郭明,等.一种斜齿轮单齿弯曲疲劳试验装置:中国, CN212340638U[P]. 2021-01-12. WANG Baobin, XU Mingzhong, GUO Ming, et al. A single tooth bending fatigue test device for helical gear:China, CN212340638U[P]. 2021-01-12. [65] 封楠.渐开线斜齿轮弯曲疲劳强度分析与试验方法研究[D].北京:机械科学研究总院, 2019. FENG Nan. Analysis on bending fatigue stress of involute helical gear and research on test method[D]. Beijing:China Productivity Center for Machinery, 2019. [66] WAGNER M, ISAACSON A, KNOX K, et al. Single tooth bending fatigue testing at any R ratio[J]. Gear Technology, 2021, 5:50-58. [67] HONG I J, KAHRAMAN A, ANDERSON N. A rotating gear test methodology for evaluation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions[J]. International Journal of Fatigue, 2020, 133:105432. [68] LUCA B, MAHMOUD B A B, FRANCO C, et al. Gear root bending strength:a comparison between single tooth bending fatigue tests and meshing gears[J]. Journal of Mechanical Design, 2021, 143(10):103402. [69] BONAITI L, GORLA C. Estimation of gear SN curve for tooth root bending fatigue by means of maximum likelihood method and statistic of extremes[J]. International Journal of Fatigue, 2021, 153:106451. [70] ZHONG B, SONG H, LIU H, et al. Loading capacity of POM gear under oil lubrication[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2022, 16(1):1-16. [71] LU Z, LIU H, WEI P, et al. The effect of injection molding lunker defect on the durability performance of polymer gears[J]. International Journal of Mechanical Sciences, 2020, 180:105665. [72] 武忠睿,魏沛堂,陈地发,等.铸锭工艺对齿轮弯曲疲劳性能影响的试验研究[J].机械传动, 2023, 47(4):98-107. WU Zhongrui, WEI Peitang, CHEN Difa, et al. Experimental investigation on effect of ingot processing on gear bending fatigue performance[J]. Journal of Mechanical Transmission, 2023, 47(4):98-107. [73] 毛天雨,刘怀举,王宝宾,等.基于分层贝叶斯模型的齿轮弯曲疲劳试验分析[J].中国机械工程, 2021, 32(24):3008-3015. MAO Tianyu, LIU Huaiju, WANG Baobin, et al. Analysis of gear bending fatigue test based on hierarchical bayesian model[J].中国机械工程, 2021, 32(24):3008-3015. [74] 王潇潇.光纤式位移及应力传感器关键技术研究[D].北京:北京邮电大学, 2020. WANG Xiaoxiao. Research on key technologies of fiber-optic displacement and stress sensors[D]. Beijing:Beijing University of Posts and Telecommunications, 2020. [75] 王洪海,李洋洋,徐刚,等.基于FBG的齿根弯曲应力在线检测方法[J].振动测试与诊断, 2017, 37(6):1156-1162. WANG Honghai, LI Yangyang, XU Gang, et al. On-line detection method of tooth root bending stress based on FBG[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(6):1156-1162. [76] 艾轶博,耿梦影,吕涛,等.基于声发射的高铁齿轮箱金属材料疲劳损伤分析[[J].铁道科学与工程学报, 2023, 20(2):423-431. AI Yibo, GENG Mengying,LÜ Tao, et al. Fatigue damage analysis of high-speed railway gearbox materials based on acoustic emission[J]. Journal of Railway Science and Engineering, 2023, 20(2):423-431. [77] CRIVELLI D, MCCRORY J, MICCOLI S, et al. Gear tooth root fatigue test monitoring with continuous acoustic emission:advanced signal processing techniques for detection of incipient failure[J]. Structural Health Monitoring, 2017, 17(3):423-433. [78] 刘怀举,张博宇,朱才朝,等.齿轮接触疲劳理论研究进展[J].机械工程学报, 2022, 58(3):95-120. LIU Huaiju, ZHANG Boyu, ZHU Caichao, et al. State of art of gear contact fatigue theories[J]. Journal of Mechanical Engineering, 2022, 58(3):95-120. [79] FUCHS D, SCHURER S, TOBIE T, et al. On the determination of the bending fatigue strength in and above the very high cycle fatigue regime of shot-peened gears[J]. Forschung im Ingenieurwesen, 2021, 86:81-92. [80] ZOU T, SHAKER M, ANGELES J, et al. An innovative tooth root profile for spur gears and its effect on service life[J]. Meccanica, 2017, 52(8):1825-1841. [81] WU J, WEI P, LIU H, et al. Effect of shot peening intensity on surface integrity of 18CrNiMo7-6 steel[J]. Surface and Coatings Technology, 2021, 421:127194. [82] ZHANG X, LIU H, WU S, et al. Experimental investigation on the effect of barrel finishing processes on surface integrity of 18CrNiMo7-6 carburized rollers[J]. Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2022, 236(5):2095-2105. [83] TOBIE T, HIPPENSTIEL F, MOHRBACHER H. Optimizing gear performance by alloy modification of carburizing steels[J]. Metals, 2017, 7(10):415. [84] MIYACHIKA K, ANDO K, XUE W D, et al. Effects of case depth, side-face carburizing and helix angle on residual stress and bending fatigue strength of case-carburized helical gears[C]//Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 30-September 2, 2009, San Diego, California. New York:ASME, 2009:295-304. [85] PEDERSEN N L. Improving bending stress in spur gears using asymmetric gears and shape optimization[J]. Mechanism and Machine Theory, 2010, 45(11):1707-1720. [86] SANDERS A, HOUSER D R, KAHRAMAN A, et al. An experimental investigation of the effect of tooth asymmetry and tooth root shape on root stresses and single tooth bending fatigue life of gear teeth[C]//Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 28-31, 2011, Washington. New York:ASME, 2011:297-305. [87] DONG P, ZUO S, TENBERGE P, et al. Rapid hob tip corner optimization of spur gears for increasing bending strength[J]. International Journal of Mechanical Sciences, 2022, 224:107322. [88] DOBLER A H, HERGESELL M H, TOBIE T, et al. Increased tooth bending strength and pitting load capacity of fine module gears[J]. Gear technology, 2016, 48-53. [89] CONCLI F. Tooth root bending strength of gears:Dimensional effect for small gears having a module below 5 mm[J]. Applied Sciences, 2021, 11(5):2416. [90] DONG J, PEI W, JI H, et al. Fatigue crack propagation experiment and numerical simulation of 42CrMo steel[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2020, 234(14):2852-2862. [91] ISO 6336-5:2016 Calculation of load capacity of spur and helical gears-Part5:Strength and quality of materials[S]. Geneva:International Standard Organization, 2016. [92] GORLA C, ROSA F, CONRADO E, et al. Bending and contact fatigue strength of innovative steels for large gears[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 228(14):2469-2482. [93] NAGATA T, TAKEMASU T, KOIDE T, et al. Tooth root bending stress analysis of pre-alloyed sintered steel gears with different densities using fem model considering voids[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63(7):568-572. [94] BLAIS P, TOUBAL L. Fatigue of short-naturalfiber-reinforced high-density polyethylene:stochastic modeling of single-gear-tooth bending[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(5):1241-1256. [95] ZORKO D. Investigation on the high-cycle tooth bending fatigue and thermo-mechanical behavior of polymer gears with a progressive curved path of contact[J]. International Journal of Fatigue, 2021, 151:106394. [96] CONCLI F, BONAITI L, GEROSA R, et al. Bending fatigue behavior of 17-4 PH gears produced by additive manufacturing[J]. Applied Sciences, 2021, 11(7):3019. [97] MAENOSONO K, SUGIMOTO T, ISHIBASHI A, et al. GSD-16 impact bending fatigue strength of induction hardened gears made from carbon and alloy steels in comparison with carburized or nitrided gears (gear strength and durability)[C]//The Proceedings of the JSME international conference on motion and power transmissions, November, 14-20, 2001, Fukuoka 2001, I.01.202:237-242. [98] WU J, LIU H, WEI P, et al. Effect of shot peening coverage on residual stress and surface roughness of 18CrNiMo7-6 steel[J]. International Journal of Mechanical Sciences, 2020, 183:105785. [99] PENG C, XIAO Y, WANG Y, et al. Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear[J]. Optics & Laser Technology, 2017, 94:15-24. [100] WANG Z, HUANG Y, XING Z, et al. Bending fatigue behaviour and fatigue endurance limit prediction of 20Cr2Ni4A gear steel after the ultrasonic surface rolling process[J]. Materials, 2021, 14(10):2516. [101] 聂祥樊,李应红,何卫锋,等.航空发动机部件激光冲击强化研究进展与展望[J].机械工程学报, 2021, 57(16):293-305. NIE Xiangfan, LI Yinghong, HE Weifeng, et al. Research progress and prospect of laser shock peening technology in aero-engine components[J]. Journal of Mechanical Engineering, 2021, 57(16):293-305. [102] LI G, BIE W, ZHAO B, et al. Ultrasonic assisted machining of gears with enhanced fatigue resistance:a comprehensive review[J]. Advances in Mechanical Engineering, 2022, 14(4):16878132221082849. [103] ZHANG B, WEI P, LIU H, et al. Effect of fine particle peening on surface integrity of flexspline in harmonic drive[J]. Surface and Coatings Technology, 2022, 433:128133. [104] WEI Y, LI Y, ZHANG Y, et al. Corrosion resistant nickel coating with strong adhesion on AZ31B magnesium alloy prepared by an in-situ shot-peening-assisted cold spray[J]. Corrosion Science, 2018, 138:105-115. [105] SEKI M, SOMEYA H, FUJII M, et al. Rolling contact fatigue life of cavitation-peened steel gear[J]. Tribology Online, 2008, 3:116-121. [106] 李应红,何卫锋,周留成.激光冲击复合强化机理及在航空发动机部件上的应用研究[J].中国科学:技术科学, 2015, 45(1):1-8. LI Yinghong, HE Weifeng, ZHOU Liucheng. The strengthening mechanism of laser shock processing and its application on the aero-engine components[J]. Scientia Sinica (Technologica), 2015, 45(1):1-8. [107] 魏沛堂,吴吉展,吴俊峰,等.航空渗碳齿轮钢滚动接触疲劳及抗疲劳设计研究[C]//第二十一届全国疲劳与断裂学术会议, 8月23, 2022,中国力学学会,中国青岛, 2022:1-2. WEI Peitang, WU Jizhan, WU Junfeng, et al. Research on rolling contact fatigue and anti-fatigue design of aviation carburized gear steel[C]//The 21st National Conference on Fatigue and Fracture, August 23, 2022, The Chinese Society of Theoretical and Applied Mechanics, Qingdao, 2022:1-2. [108] 赵波,姜燕,别文博.超声滚压技术在表面强化中的研究与应用进展[J].航空学报, 2020, 41(10):42-67. ZHAO Bo, JIANG Yan, BIE Wenbo. Ultrasonic rolling technology in surface strengthening:Progress in research and applications[J].航空学报, 2020, 41(10):42-67. [109] 王毅.超声滚压齿轮齿根表面完整性研究[D].焦作:河南理工大学, 2020. WANG Yi. Research on the surface integrity of gear dedendum by ultrasonic rolling[D]. Jiaozuo:Henan Polytechnic University, 2020. [110] 郑建新,罗傲梅,刘传绍.超声表面强化技术的研究进展[J].制造技术与机床, 2012(10):32-36. ZHENG Jianxin, LUO Aomei, LIU Chuanshao. Development of ultrasonic surface enhancement technique[J]. Manufacturing Technology & Machine Tool, 2012(10):32-36. [111] JIANG Y, ZHAO B. Design and experimental study of the rolling-enhanced acoustic system for gear tooth surface[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(9):6489-6501. [112] ZHANG X, WEI P, PARKER R G, et al. Study on the relation between surface integrity and contact fatigue of carburized gears[J]. International Journal of Fatigue, 2022, 165:107203. [113] 赵鑫,李秀红,李文辉,等.主轴式滚磨光整加工主要参数对力链影响研究[J].机械设计与制造, 2022, 12:113-119. ZHAO Xin, LI Xiuhong, LI Wenhui, et al. Research on influence of main parameters of spindle barrel finishing on force chain[J]. Machinery Design & Manufacture, 2022, 12:113-9. [114] 樊毅啬.齿轮弯曲疲劳强度影响因素分析及试验研究[D].重庆:重庆大学, 2014. FAN Yise. The analysis and experimental research of gear bending fatigue strength influence[D]. Chongqing:Chongqing University, 2014. |
[1] | 王湃, 白翌帆, 赵文祥, 张毅博, 刘志兵. 高温合金短电弧辅助铣削表面完整性演化研究[J]. 机械工程学报, 2024, 60(9): 434-444. |
[2] | 何喆, 黄新春, 宋艺辉, 史耀耀, 张兆顷, 史恺宁. 服役温度影响的DD6单晶高温合金磨削/喷丸加工表面完整性演化规律研究[J]. 机械工程学报, 2024, 60(9): 410-420. |
[3] | 肖贵坚, 刘振扬, 贺毅, 刘岗, 邓忠才. 激光辅助CBN砂带磨削TC4钛合金材料去除行为及表面完整性研究[J]. 机械工程学报, 2024, 60(9): 241-253. |
[4] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[5] | 丁文锋, 赵俊帅, 张洪港, 赵彪, 司文元, 宋强, 黄庆飞. 齿轮高效精密磨削加工及表面完整性控制技术研究进展[J]. 机械工程学报, 2024, 60(7): 350-373. |
[6] | 吴吉展, 魏沛堂, 刘怀举, 吴少杰, 朱才朝. 航空齿轮钢表面完整性与滚动接触疲劳性能关联规律研究[J]. 机械工程学报, 2024, 60(4): 284-295. |
[7] | 何海风, 刘怀举, 朱才朝, 李高萌, 陈地发. 残余应力对齿轮弯曲疲劳的量化影响研究[J]. 机械工程学报, 2023, 59(4): 53-61. |
[8] | 刘逸航, 周力, 韩雄, 张明亮, 耿大喜, 刘连星, 尹晓明, 姜兴刚, 张德远. 波动式超声铣削方法与钛合金后处理工艺的相容性研究[J]. 机械工程学报, 2023, 59(23): 320-330. |
[9] | 刘怀举, 张博宇, 朱才朝, 魏沛堂. 齿轮接触疲劳理论研究进展[J]. 机械工程学报, 2022, 58(3): 95-120. |
[10] | 刘佳佳, 姜兴刚, 高泽, 张明亮, 张德远. 高速旋转超声椭圆振动侧铣削振幅对钛合金表面完整性影响的研究[J]. 机械工程学报, 2019, 55(11): 215-223. |
[11] | 冯平法, 王健健, 张建富, 吴志军. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报, 2017, 53(19): 3-21. |
[12] | 雷明凯, 郭东明. 高性能表面层制造:基于可控表面完整性的精密制造*[J]. 机械工程学报, 2016, 52(17): 187-197. |
[13] | 鲍官培, 周翟和, 章恺, 张霞, 赵明才, 汪炜. 太阳能硅片游离磨料电解磨削多线切割表面完整性研究[J]. 机械工程学报, 2016, 52(11): 201-206. |
[14] | 朱有利;刘开亮;黄元林;李占明;王智. 应力集中和表面完整性对平尾大轴抗疲劳性能的影响[J]. , 2012, 48(22): 93-97. |
[15] | 彭锐涛;廖妙;谭援强;刘雄伟. 预应力切削镍基高温合金的试验研究[J]. , 2012, 48(19): 186-191. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||