[1] RUSSO M, SADATI S M H, DONG X, et al. Continuum robots:An overview[J]. Advanced Intelligent Systems, 2023, 5:2200367. [2] 孙广开,何彦霖,于洋,等.连续体手术机器人光纤导航技术现状和展望[J].机械工程学报, 2023, 59(1):1-18. SUN Guangkai, HE Yanlin, YU Yang, et al. Fiberoptic navigation technology for continuum surgical robots:Status and future perspectives[J]. Journal of Mechanical Engineering, 2023, 59(1):1-18. [3] RUSSO M, SRIRATANASAK N, WM B, et al. Cooperative continuum robots:Enhancing individual continuum arms by reconfiguring into a parallel manipulator[J]. IEEE Robotics and Automation Letters, 2022, 7(2):1558-1565. [4] DUPONT P E, SIMAAN N, CHOSET H, et al. Continuum robots for medical interventions[J]. Proceedings of the IEEE, 2022, 110(7):847-870. [5] 严鲁涛,王琦,李海源,等.基于SMA驱动的连续体手术机器人研究综述[J].机械工程学报, 2021, 57(11):138-152. YAN Lutao, WANG, Qi, LI Haiyuan, et al. Review of continue surgical robot actuated by SMA[J]. Journal of Mechanical Engineering, 2021, 57(11):138-152. [6] DA VEIGA T, CHANDLER J H, LLOYD P, et al. Challenges of continuum robots in clinical context:A review[J]. Progress in Biomedical Engineering, 2020, 2(3):032003. [7] MIT Technology Review. Robot-assisted high-precision surgery has passed its first test in humans[EB/OL].[2020-02-11]. https://www.technologyreview.com/2020/02/11/844866/robot-assisted-high-precision-surgery-has-p assed-its-first-test-in-humans. [8] RobotUnion. High-precision surgery robots:more than an assistant for surgeons[EB/OL].[2020-02-10]. https://robotunion.eu/high-precision-surgery-robots-more-thanan-assistant-for-surgeons. [9] Medgadget, Inc. Microsure MUSA robot used for first time on real patients[EB/OL].[2020-02-12]. https://www.medgadget.com/2020/02/microsure-musa-robot-us ed-for-first-time-on-real-patients.html. [10] SHI C Y, LUO X B, QI P, et al. Shape sensing techniques for continuum robots in minimally invasive surgery:A surgery[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(8):1665-1678. [11] VAN HERWAARDEN J A, JANSEN M M, VONKEN E P A, et al. First in human clinical feasibility study of endovascular navigation with fiber optic RealShape (FORS) technology[J]. European Journal of Vascular and Endovascular Surgery, 2021, 61(2):317-325. [12] FLORIS I, ADAM J M, CALDERON P A, et al. Fiber optic shape sensors:A comprehensive review[J]. Optics and Lasers in Engineering, 2020, 139:106508. [13] 夏启,王洪业,杨世泰,等.多芯光纤形状传感研究进展[J].激光与光电子学进展, 2021, 58(13):1306012. XIA Qi, WANG Hongye, YANG Shitai, et al. Research development of multi-core optical fiber shape sensing technology[J]. Laser & Optoelectronics Progress, 2021, 58(13):1306012. [14] JANSEN M, KHANDIGE A, KOBEITER H, et al. Three dimensional visualisation of endovascular guidewires and catheters based on laser light instead of fluoroscopy with fiber optic RealShape technology:Preclinical results[J]. European Journal of Vascular and Endovascular Surgery, 2020, 60(1):135-143. [15] GREGORY C, PAUL T, LARA F M, et al. System for tracking and determining characteristics of inflatable medical instruments using fiber-optical realshape data:European, 16730298.3[P]. 2016-06-08. [16] KHAN F, DONDER A, GALVAN S, et al. Pose measurement of flexible medical instruments using fiber Bragg gratings in multi-core fiber[J]. IEEE Sensors Journal, 2020, 20(18):10955-10962. [17] KHAN F, DENASI A, BARRERA D, et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal, 2019, 19(14):5878-5884. [18] JACKLE S, EIXMANN T, SCHULZ HILDEBRANDT H, et al. Fiber optical shape sensing of flexible instruments for endovascular navigation[J]. International Journal of Computer Assisted Radiology and Surgery, 2019, 14(12):2137-2145. [19] INTUITIVE SURGICAL. How Ion Works[EB/OL].[2021-01-01]. https://www.intuitive.com/en-us/productsand-services/ion/how-ion-works [20] FLORIS I. Optical multicore fiber shape sensors:A numerical and experimental performance assessment[D]. Valencia:Universitat Politècnica De València, 2020. [21] ZHU W, SUN G, HE Y, et al. Shape reconstruction based on a multicore optical fiber array with temperature self-compensation[J]. Applied Optics, 2021, 60(20):5795-5804. [22] 朱晓锦,蒋丽娜,孙冰,等.基于B样条拟合的光纤光栅机敏柔性结构形态重构[J].光学精密工程, 2011, 19(7):1627-1634. ZHU Xiaojin, JIANG Lina, SUN Bing, et al. Shape reconstruction of FBG intelligent flexible structure based on B-spline fitting[J]. Optics and Precision Engineering, 2011, 19(7):1627-1634. |