机械工程学报 ›› 2024, Vol. 60 ›› Issue (3): 238-253.doi: 10.3901/JME.2024.03.238
蒋周明矩1, 熊异1, 王柏村2
收稿日期:
2023-03-06
修回日期:
2023-10-15
出版日期:
2024-02-05
发布日期:
2024-04-28
通讯作者:
熊异,男,1988年出生,博士,助理教授,博士研究生导师。主要研究方向为计算设计与制造、面向增材制造的设计、复合材料增材制造。Email:xiongy3@sustech.edu.cn
作者简介:
蒋周明矩,男, 1996 年出生。主要研究方向为创成式产品设计、数据驱动的产品设计方法。Email:jiangzmj2020@mail.sustech.edu.cn;王柏村,男, 1990 年出生,博士,研究员,博士研究生导师。主要研究方向为智能制造、人-信息-物理系统、工业与系统工程。Email:baicunw@zju.edu.cn
基金资助:
JIANG Zhoumingju1, XIONG Yi1, WANG Baicun2
Received:
2023-03-06
Revised:
2023-10-15
Online:
2024-02-05
Published:
2024-04-28
摘要: 工业 5.0 是一种以价值驱动的新兴制造模式,其中人本智造是核心理念之一。然而,目前人本智造研究主要聚焦于系统层级,针对增材制造等特定工艺应用的研究仍然较少,因此亟需明晰相关科学问题与关键挑战。基于人-信息-物理系统的理论体系,提出了面向工业 5.0 的人机协作增材制造参考框架,建立产品-经济-生态三层次模型,并结合增材制造技术的内在特点和功能演进阐释了人机协作增材制造的基本概念。围绕产品开发流程,讨论了关键使能技术,包括万物互联、人工智能、数字孪生、扩展现实、智能材料等。最后,探讨了人机协作增材制造在产品层、经济层、生态层中的典型应用,包括个性化产品设计、交互式制造、面向工艺链的人机协作、众创式设计、分布式制造和节能减排等。该框架旨在研究人机协作增材制造,通过发展人-信息-物理系统理论,首次系统地阐述了其核心概念、关键技术和典型场景,以推动增材制造向人机协作的工业 5.0 范式转变,更好地满足用户个性化需求。
中图分类号:
蒋周明矩, 熊异, 王柏村. 面向工业5.0的人机协作增材制造[J]. 机械工程学报, 2024, 60(3): 238-253.
JIANG Zhoumingju, XIONG Yi, WANG Baicun. Human-machine Collaborative Additive Manufacturing for Industry 5.0[J]. Journal of Mechanical Engineering, 2024, 60(3): 238-253.
[1] HUANG S, WANG B, LI X, et al. Industry 5.0 and Society 5.0-Comparison, complementation and co-evolution[J]. Journal of Manufacturing Systems, 2022, 64:424-428. [2] LENG J, SHA W, WANG B, et al. Industry 5.0:Prospect and retrospect[J]. Journal of Manufacturing Systems, 2022, 65:279-295. [3] 王柏村,薛塬,延建林,等.以人为本的智能制造:理念、技术与应用[J].中国工程科学, 2020, 22(4):139-146. WANG Baicun, XUE Yuan, YAN Jianlin, et al. Human-centered intelligent manufacturing:Overview and perspectives[J]. Strategic Study of CAE, 2020, 22(4):139-146. [4] ZHOU J, ZHOU Y, WANG B, et al. Human-cyberphysical systems (HCPSs) in the context of newgeneration intelligent manufacturing[J]. Engineering, 2019, 5(4):624-636. [5] WANG B, ZHENG P, YIN Y, et al. Toward human-centric smart manufacturing:A human-cyberphysical systems (HCPS) perspective[J]. Journal of Manufacturing Systems, 2022, 63:471-490. [6] GIBSON I, ROSEN D, STUCKER B, et al. Design for additive manufacturing[M]. New York:Springer, 2021. [7] XIONG Y, TANG Y, KIM S, et al. Human-machine collaborative additive manufacturing[J]. Journal of Manufacturing Systems, 2023, 66:82-91. [8] NARDO M, FORINO D, MURINO T. The evolution of man-machine interaction:The role of human in Industry 4.0 paradigm[J]. Production & manufacturing research, 2020, 8(1):20-34. [9] XIONG Y, TANG Y, ZHOU Q, et al. Intelligent additive manufacturing and design state of the art and future perspectives[J]. Additive Manufacturing, 2022:103139. [10] JIANG Z, WEN H, HAN F, et al. Data-driven generative design for mass customization:A case study[J]. Advanced Engineering Informatics, 2022, 54:101786. [11] LHACHEMI H, MALIK A, SHORTEN R. augmented reality, cyber-physical systems, and feedback control for additive manufacturing:A review[J]. IEEE Access, 2019, 7:50119-35. [12] RODRIGUEZ-CONDE I, CAMPOS C. Towards customer-centric additive manufacturing:Making human-centered 3D design tools through a handheldbased multi-touch user interface[J]. Sensors, 2020, 20(15):4255. [13] DIEGEL O, NORDIN A, MOTTE D. A practical guide to design for additive manufacturing[M]. London:Springer, 2019. [14] LU Y, ZHENG H, CHAND S, et al. Outlook on human-centric manufacturing towards Industry 5.0[J]. Journal of Manufacturing Systems, 2022, 62:612-627. [15] YIN Y, ZHENG P, LI C, et al. A state-of-the-art survey on Augmented Reality-assisted Digital Twin for futuristic human-centric industry transformation[J]. Robotics and Computer-Integrated Manufacturing, 2023, 81:102515. [16] XIONG Y, DUONG P L T, WANG D, et al. Data-driven design space exploration and exploitation for design for additive manufacturing[J]. Journal of Mechanical Design, 2019, 141(10):101101. [17] LIU G, XIONG Y, ROSEN D W. Multidisciplinary design optimization in design for additive manufacturing[J]. Journal of Computational Design and Engineering, 2022, 9(1):128-143. [18] KIM S, ROSEN D W, WITHERELL P, et al. A design for additive manufacturing ontology to support manufacturability analysis[J]. Journal of Computing and Information Science in Engineering, 2019, 19(4):041014. [19] MALIK A, LHACHEMI H, SHORTEN R. I-nteract:A cyber-physical system for real-time interaction with physical and virtual objects using mixed reality technologies for additive manufacturing[J]. IEEE Access, 2020, 8:98761-74. [20] PEREZ K B, ANDERSON D S, WOOD K L. Crowdsourced design principles for leveraging the capabilities of additive manufacturing[C]//Proceedings of the International Conference of Engineering Design, 2015. [21] DURãO L F C, CHRIST A, ANDERL R, et al. Distributed manufacturing of spare parts based on additive manufacturing:Use cases and technical aspects[J]. Procedia CIRP, 2016, 57:704-749. [22] HUANG S H, LIU P, MOKASDAR A, et al. Additive manufacturing and its societal impact:a literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67:1191-203. [23] MATOS F, GODINA R, JACINTO C, et al. Additive manufacturing:Exploring the social changes and impacts[J]. Sustainability, 2019, 11(14):3757. [24] PRABHU R, MILLER S R, SIMPSON T W, et al. Exploring the effects of additive manufacturing education on students'engineering design process and its outcomes[J]. Journal of Mechanical Design, 2020, 142(4):042001. [25] AGRAWAL R, VINODH S. State of art review on sustainable additive manufacturing[J]. Rapid Prototyping Journal, 2019, 25(6):1045-1060. [26] MIRAZ M H, ALI M, EXCELL P S, et al. A review on Internet of Things (IoT), Internet of everything (IoE) and Internet of nano things (IoNT)[J]. 2015 Internet Technologies and Applications (ITA), 2015:219-224. [27] JIAO R, COMMURI S, PANCHAL J, et al. Design engineering in the age of industry 4.0[J]. Journal of Mechanical Design, 2021, 143(7):070801. [28] LIU C, VENGAYIL H, LU Y, et al. A cyber-physical machine tools platform using OPC UA and MTConnect[J]. Journal of Manufacturing Systems, 2019, 51:61-74. [29] NOURBAKHSH M, MORRIS N, BERGIN M, et al. Embedded sensors and feedback loops for iterative improvement in design synthesis for additive manufacturing[C]//Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2016 American Society of Mechanical Engineers. [30] MULLER M, CHILTON L B, KANTOSALO A, et al. GenAICHI:Generative AI and HCI[C]//Proceedings of the CHI Conference on Human Factors in Computing Systems Extended Abstracts, 2022. [31] DANG H, MECKE L, LEHMANN F, et al. How to Prompt?Opportunities and challenges of zero-and few-shot learning for human-ai interaction in creative applications of generative models[EB/OL]. arXiv preprint arXiv:220901390, 2022. [32] WANG D, CHURCHILL E, MAES P, et al. From human-human collaboration to Human-AI collaboration:Designing AI systems that can work together with people[C]//Proceedings of the Extended abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, 2020. [33] JIANG J, XU X, XIONG Y, et al. A novel strategy for multi-part production in additive manufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(5):1237-1248. [34] BADINI S, REGONDI S, FRONTONI E, et al. Assessing the capabilities of ChatGPT to improve additive manufacturing troubleshooting[J]. Advanced Industrial and Engineering Polymer Research, 2023, 6(3):278-287. [35] WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples:A survey on few-shot learning[J]. ACM Computing Surveys, 2020, 53(3):1-34. [36] 李鹏芳,刘芳,李玲玲,等.嵌入标签语义的元特征再学习和重加权小样本目标检测[J].计算机学报, 2022, 45(12):2561-2575. LI Pengfang, LIU Fang, LI Lingling, et al. Meta-feature relearning with embedded label semantics and reweighting for few-shot object detection[J]. Journal of Computer Science, 2022, 45:2561-2575. [37] 何鹏,孙帆,胡小方,等.小样本激光切割工艺参数预测模型优化[J].激光杂志, 2021, 42(12):170-175. HE Peng, SUN Fan, HU Xiaofang, et al. Optimization of prediction system for small sample laser cutting process parameters[J]. Laser Journal, 2021, 42(12):170-175. [38] SIRIWARDHANA Y, PORAMBAGE P, LIYANAGE M, et al. A survey on mobile augmented reality with 5G mobile edge computing:Architectures, applications, and technical aspects[J]. IEEE Communications Surveys & Tutorials, 2021, 23(2):1160-92. [39] 李伯虎,柴旭东,侯宝存,等.云制造系统3.0——一种"智能+"时代的新智能制造系统[J].计算机集成制造系统, 2019, 25(12):2997-3012. LI Bohu, CHAI Xudong, HOU Baocun, et al. Cloud manufacturing system3.0-new intelligent manufacturing system in era of "Intelligence+"[J]. Computer Integrated Manufacturing System, 2019, 25(12):2997-3012. [40] 刘强.智能制造理论体系架构研究[J].中国机械工程, 2020, 31(1):24-36. LIU Qiang. Study on architecture of intelligent manufacturing theory[J]. China Mechanical Engineering, 2020, 31(1):24-36. [41] 陶飞,刘蔚然,刘检华,等.数字孪生及其应用探索[J].计算机集成制造系统, 2018, 24(1):1-18. TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1):1-18. [42] TAO F, ZHANG M. Digital twin shop-floor:A new shop-floor paradigm towards smart manufacturing[J]. Ieee Access, 2017, 5:20418-27. [43] GRIEVES M, VICKERS J. Digital twin:Mitigating unpredictable, undesirable emergent behavior in complex systems[M]//GRIEVES M, VICKERS J. Transdisciplinary Perspectives on Complex Systems. Springer. 2017:85-113. [44] FOURGEAU E, GOMEZ E, ADLI H, et al. System engineering workbench for multi-views systems methodology with 3DEXPERIENCE Platform. the aircraft radar use case[M]. Complex Systems Design & Management Asia. Springer. 2016:269-70. [45] FAST-BERGLUNDÅ, GONG L, LI D. Testing and validating extended reality (xR) technologies in manufacturing[J]. Procedia Manufacturing, 2018, 25:31-38. [46] MATHEW P S, PILLAI A S. Role of immersive (XR) technologies in improving healthcare competencies:A review[J]. Virtual and Augmented Reality in Education, Art, and Museums, 2020:23-46. [47] VO H. Design creativity in Industry 4.0:Gravity Sketch and 3D printing in a Luminaire design project[J]. Journal of Engineering, Design and Technology, 2022,(ahead-of-print). [48] WANG X, ONG S K, NEE A Y. A comprehensive survey of augmented reality assembly research[J]. Advances in Manufacturing, 2016, 4(1):1-22. [49] LEUTERT F, SCHILLING K. Projector-based augmented reality for telemaintenance support[J]. IFAC-PapersOnLine, 2018, 51(11):502-7. [50] ZUBIZARRETA J, AGUINAGA I, AMUNDARAIN A. A framework for augmented reality guidance in industry[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102:4095-108. [51] SILVA H, RESENDE R, BRETERNITZ M. Mixed reality application to support infrastructure maintenance[C]//Proceedings of the 2018 International Young Engineers Forum (YEF-ECE), 2018, IEEE. [52] MITTERBERGER D, DÖRFLER K, SANDY T, et al. Augmented bricklaying:Human-machine interaction for in situ assembly of complex brickwork using object-aware augmented reality[J]. Construction Robotics, 2020, 4:151-61. [53] LIU K, LI X. Enabling context-aware indoor augmented reality via smartphone sensing and vision tracking[J]. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 2015, 12(1s):1-23. [54] BAROROH D K, CHU C-H, WANG L. Systematic literature review on augmented reality in smart manufacturing:Collaboration between human and computational intelligence[J]. Journal of Manufacturing Systems, 2021, 61:696-711. [55] SU M, SONG Y. Printable smart materials and devices:Strategies and applications[J]. Chemical Reviews, 2021, 122(5):5144-5164. [56] XU Z, FRANKWICK G L, RAMIREZ E. Effects of big data analytics and traditional marketing analytics on new product success:A knowledge fusion perspective[J]. Journal of Business Research, 2016, 69(5):1562-1566. [57] ZHANG C, CHEN D, TAO F, et al. Data driven smart customization[J]. Procedia CIRP, 2019, 81:564-9. [58] ALORWU A, SAVAGE S, VAN BERKEL N, et al. Regrow:Reimagining global crowdsourcing for better human-ai collaboration[C]//Proceedings of the CHI Conference on Human Factors in Computing Systems Extended Abstracts, 2022. [59] ALBORS J, RAMOS J C, HERVAS J L. New learning network paradigms:Communities of objectives, crowdsourcing, wikis and open source[J]. International Journal of Information Management, 2008, 28(3):194-202. [60] DARWISH L R, EL-WAKAD M T, FARAG M M. Towards sustainable industry 4.0:A green real-time IIoT multitask scheduling architecture for distributed 3D printing services[J]. Journal of Manufacturing Systems, 2021, 61:196-209. [61] NANDI S, SARKIS J, HERVANI A A, et al. Redesigning supply chains using blockchain-enabled circular economy and COVID-19 experiences[J]. Sustainable Production and Consumption, 2021, 27:10-22. [62] NORMAN D A, STAPPERS P J. DesignX:Complex sociotechnical systems[J]. The Journal of Design, Economics, and Innovation, 2015, 1(2):83-106. [63] 钟登华.新工科建设的内涵与行动[J].高等工程教育研究, 2017, 164(3):1-6. ZHONG Denghua. Connotations and actions for establishing the emerging engineering education[J]. Research in Higher Education of Engineering, 2017, 164(3):1-6. [64] RICHEY M, NANCE M, HANNEMAN L, et al. A complex sociotechnical systems approach to provisioning educational policies for future workforce[J]. Procedia Computer Science, 2014, 28:857-864. [65] MOKTADIR M A, RAHMAN T, RAHMAN M H, et al. Drivers to sustainable manufacturing practices and circular economy:A perspective of leather industries in Bangladesh[J]. Journal of Cleaner Production,2018,174:1366-1380. [66] BAG S, YADAV G, WOOD L C, et al. Industry 4.0 and the circular economy:Resource melioration in logistics[J]. Resources Policy, 2020, 68:101776. [67] YANG Y, BOOM R, IRION B, et al. Recycling of composite materials[J]. Chemical Engineering and Processing:Process Intensification, 2012, 51:53-68. [68] TANG Y, DONG G, XIONG Y, et al. Data-driven design of customized porous lattice sole fabricated by additive manufacturing[J]. Procedia Manufacturing, 2021, 53:318-326. [69] ZHOU F, JIANXIN JIAO R, LINSEY J S. Latent customer needs elicitation by use case analogical reasoning from sentiment analysis of online product reviews[J]. Journal of Mechanical Design, 2015, 137(7):. [70] 曾真,孙效华.基于增强智能理念的人机协同设计探索[J].包装工程, 2022, 43(20):154-161. ZENG Zhen, SUN Xiaohua. Human-machine collaborative design exploration based on the concept of augmented intelligence[J]. Packaging Engineering, 2022, 43(20):154-161. [71] RAMESH A, DHARIWAL P, NICHOL A, et al. Hierarchical text-conditional image generation with clip latents[J]. arXiv preprint arXiv:220406125, 2022. [72] ZHENG P, YU S, WANG Y, et al. User-experience based product development for mass personalization:A case study[J]. Procedia CIRP, 2017, 63:2-7. [73] AHELEROFF S, ZHONG R Y, XU X. A digital twin reference for mass personalization in industry 4.0[J]. Procedia CIRP, 2020, 93:228-233. [74] WILLIS K D, XU C, WU K-J, et al. Interactive fabrication:New interfaces for digital fabrication[C]//The Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction, 2010. [75] MUELLER S. 3D printing for human-computer interaction[J]. Interactions, 2017, 24(5):76-79. [76] MUELLER S, IM S, GUREVICH S, et al. WirePrint:3D printed previews for fast prototyping[C]//The Proceedings of the 27th annual ACM symposium on User Interface Software and Technology, 2014. [77] PENG H, WU R, MARSCHNER S, et al. On-the-fly print:Incremental printing while modelling[C]//The Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2016. [78] TAKAHASHI H, KIM J. 3D pen+3D printer:Exploring the role of humans and fabrication machines in creative making[C]//The Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019. [79] WIBRANEK B, TESSMANN O. Digital rubble compression-only structures with irregular rock and 3d printed connectors[C]//The Proceedings of IASS Annual Symposia, 2019. International Association for Shell and Spatial Structures (IASS). [80] PENG H, BRIGGS J, WANG C Y, et al. RoMA:Interactive fabrication with augmented reality and a robotic 3D printer[C]//The Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 2018. [81] YAMAOKA J, KAKEHI Y. Mirage printer:Interactive fabrication on a 3D printer with a mid-air display[M]. ACM SIGGRAPH 2016 Studio. 2016:1-2. [82] OSTRANDER J K, TUCKER C S, SIMPSON T W, et al. Evaluating the use of virtual reality to teach introductory concepts of additive manufacturing[J]. Journal of Mechanical Design, 2020, 142(5):051702. [83] ZHANG K, CHERMPRAYONG P, XIAO F, et al. Aerial additive manufacturing with multiple autonomous robots[J]. Nature, 2022, 609(7928):709-17. [84] MITTERBERGER D, ATANASOVA L, DöRFLER K, et al. Tie a knot:Human-robot cooperative workflow for assembling wooden structures using rope joints[J]. Construction Robotics, 2022:1-16. [85] 叶志鹏,李骞,雷柏茂,等.增材制造过程监控技术现状综述[J].电子产品可靠性与环境试验, 2018, 36(5):77-82. YE Zhipeng, LI Qian, LEI Baimao, et al. Review of the current situation of process monitoring technology of additive manufacturing[J]. Electronic Product Reliability and Environmental Testing, 2018, 36(5):77-82. [86] 果春焕,王泽昌,严家印,等.增减材混合制造的研究进展[J].工程科学学报, 2020, 42(5):540-548. GUO Chunhuan, WANG Zechang, YAN Jiayin, et al. Research progress in additive-subtractive hybrid manufacturing[J]. Chinese Journal of Engineering, 2020, 42(5):540-548. [87] BASINGER K L, KEOUGH C B, WEBSTER C E, et al. Development of a modular computer-aided process planning (CAPP) system for additive-subtractive hybrid manufacturing of pockets, holes, and flat surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5):2407-2420. [88] BRYNJOLFSSON E, MCAFEE A. The second machine age:Work, progress, and prosperity in a time of brilliant technologies[M]. WW Norton & Company, 2014. [89] LIU N,LI S, DU Y, et al. Compositional visual generation with composable diffusion models[C]//Proceedings of the Computer Vision-ECCV 2022:17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XVII, F, 2022. Springer. [90] SONG B, SORIA ZURITA N F, NOLTE H, et al. When faced with increasing complexity:the effectiveness of artificial intelligence assistance for drone design[J]. Journal of Mechanical Design, 2022, 144(2):021710. [91] SONG B, GYORY J T, ZHANG G, et al. Decoding the agility of artificial intelligence-assisted human design teams[J]. Design Studies, 2022, 79:101094. [92] SWAN M. Health 2050:The realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen[J]. Journal of Personalized Medicine, 2012, 2(3):93-118. [93] HAQ I U, FRANCESCHINI F. A preliminary conceptual scale to discretize the distributed manufacturing continuum[J]. International Journal of Industrial and Manufacturing Engineering, 2018, 12(10):1315-1340. [94] LI S, WANG R, ZHENG P, et al. Towards proactive human-robot collaboration:A foreseeable cognitive manufacturing paradigm[J]. Journal of Manufacturing Systems, 2021, 60:547-552. [95] WILDHIRT K, SEIDEL C, BUB U, et al. Digitalization partnership:How GKN established a digital platform with 3YD to realize the disruptive potential of metal additive manufacturing[J]. Digitalization Cases:How Organizations Rethink Their Business for the Digital Age, 2019:139-157. [96] GORECKY D, SCHMITT M, LOSKYLL M, et al. Human-machine-interaction in the industry 4.0 era[C]//Proceedings of the 201412th IEEE International Conference on Industrial Informatics (INDIN), 2014. IEEE. [97] VAFADAR A, GUZZOMI F, RASSAU A, et al. Advances in metal additive manufacturing:A review of common processes, industrial applications, and current challenges[J]. Applied Sciences, 2021, 11(3):1213. [98] PENG T, LV J, MAJEED A, et al. An experimental investigation on energy-effective additive manufacturing of aluminum parts via process parameter selection[J]. Journal of Cleaner Production, 2021, 279:123609. [99] KUMAR A, SINGH G, SINGH R P, et al. Role of additive manufacturing in industry 4.0 for maintenance engineering[M]. Applications and Challenges of Maintenance and Safety Engineering in Industry 40. IGI Global. 2020:235-254. [100] WILSON J M, PIYA C, SHIN Y C, et al. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis[J]. Journal of Cleaner Production, 2014, 80:170-178. [101] LEINO M, PEKKARINEN J, SOUKKA R. The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing-enabling circular economy[J]. Physics Procedia, 2016, 83:752-760. [102] LAHROUR Y, BRISSAUD D. A technical assessment of product/component re-manufacturability for additive remanufacturing[J]. Procedia CIRP, 2018, 69:142-147. [103] 李涤尘,鲁中良,田小永,等.增材制造——面向航空航天制造的变革性技术[J].航空学报,2022,43(4):22-38. LI Dichen, LU Zhongliang, TIAN Xiaoyong, et al. Additive manufacturing-revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica 2022, 43(4):22-38. [104] SHANMUGAM V, DAS O, NEISIANY R E, et al. Polymer recycling in additive manufacturing:An opportunity for the circular economy[J]. Materials Circular Economy, 2020, 2:1-11. [105] WANG Y, ZHENG P, PENG T, et al. Smart additive manufacturing:current artificial intelligence-enabled methods and future perspectives[J]. Science China Technological Sciences, 2020, 63(9):1600-1611. [106] XIONG Y, DHARMAWAN A G, TANG Y, et al. A knowledge-based process planning framework for wire arc additive manufacturing[J]. Advanced Engineering Informatics, 2020, 45:101135. [107] TANG Y, DONG G, ZHOU Q, et al. Lattice structure design and optimization with additive manufacturing constraints[J]. IEEE Transactions on Automation Science and Engineering, 2017, 15(4):1546-1562. [108] CHOWDHURY S, MHAPSEKAR K, ANAND S. Part build orientation optimization and neural network-based geometry compensation for additive manufacturing process[J]. Journal of Manufacturing Science and Engineering, 2018, 140(3):106716. [109] LAZER D, KENNEDY R, KING G, et al. The parable of Google Flu:Traps in big data analysis[J]. Science, 2014, 343(6176):1203-1205. |
[1] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
[2] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
[3] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[4] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
[5] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[6] | 杜军, 王谦元, 何冀淼, 张永恒, 魏正英. TIG电弧辅助熔滴沉积增材制造中熔滴偏距对熔池形貌的影响机制研究[J]. 机械工程学报, 2024, 60(5): 219-230. |
[7] | 石毅磊, 权银洙, 许海鹰, 王壮, 马文龙, 彭勇. 丝束同轴冷阴极电子枪电子束注腰位置影响因素分析[J]. 机械工程学报, 2024, 60(3): 328-336. |
[8] | 荣鹏, 成靖, 邓鸿文, 陶常安, 高川云, 冉先喆, 程序, 汤海波, 刘栋. 不同热处理对激光定向能量沉积制造TC4钛合金组织和拉伸性能的影响[J]. 机械工程学报, 2024, 60(20): 99-107. |
[9] | 夏令伟, 谢亿民, 马国伟. 3D打印制造约束下的多孔结构与路径协同优化方法[J]. 机械工程学报, 2024, 60(19): 241-249. |
[10] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[11] | 黄金杰, 赵欣. 3D打印中的分层计算研究进展[J]. 机械工程学报, 2024, 60(17): 235-262. |
[12] | 喻惟刚, 文思捷, 李建军, 李心雨. 基于可供性推理的人机协作拆卸序列规划方法[J]. 机械工程学报, 2024, 60(17): 297-309. |
[13] | 喻康, 傅建中, 贺永. 面向软组织缺损修复的组织工程支架研究进展[J]. 机械工程学报, 2024, 60(15): 255-271. |
[14] | 张立浩, 钱波, 茅健, 樊红日, 张朝瑞, 李旭鹏. 基于增材制造的“猫耳形”气膜孔冷却性能研究[J]. 机械工程学报, 2024, 60(15): 334-345. |
[15] | 肖锋, 刘佳, 石岩. 基于增材制造的激光焊接保护喷嘴设计[J]. 机械工程学报, 2024, 60(14): 185-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||