[1] 朱拥勇,王德石,李冬梅.筒形发动机机构演变与空间机构动力学问题的研究[J].机械设计与制造, 2005(12):47-49. ZHU Yongyong, WANG Deshi, LI Dongmei. The evolvement of structural from about sleeving engine and the kinetics of spatial mechanism[J]. Machinery Design and Manufacture, 2005(12):47-49. [2] WAHL R H. Rotary nutating engine:United States, US3895610[P]. 1974-05-17. [3] PARKER A. Swashplate machines:United States, US3942384[P]. 1976-03-09. [4] KUKUČA P, BARTA D, LABUDA R, et al. Engine with unconventional crank mechanism FIK1[J]. MATEC Web of Conferences, 2018, 244:03004. [5] GILL G S, FREUDENSTEIN F. Minimization of inertia-induced forces in spherical four-bar mechanisms, part 2:Wobble-plate engines[J]. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105(3):478-483. [6] YU Z, LEE T W. Kinematic structural and functional analysis of wobble-plate engines[J]. ASME Journal of Mechanisms, Transmissions and Automation in Design, 1986, 108(2):226-236. [7] KORAKIANITIS T, MEYER L, BORUTA M, et al. One-disk nutating-engine performance for unmanned aerial vehicles[J]. ASME Journal of Engineering for Gas Turbines and Power, 2004, 126(3):475-481. [8] SEBASTIAMPILLAI J, ROLT A M, JACOB F, et al. Thermodynamic analysis of nutating disc engine topping cycles for aero-engine applications[J]. Energy, 2019, 182:641-655. [9] MEITNER P L, BORUTA M, JEROVSEK J. The nutating engine-prototype engine progress report and test results[R]. Cleveland, United States:NASA, 2006. [10] MAZURO P, KOZAK D. Experimental investigation on the performance of the prototype of aircraft opposed-piston engine with various values of intake pressure[J]. Energy Conversion and Management, 2022, 269:116075. [11] 摆盘式柴油机[J].今日科技, 1972(7):35-36. Wobble-plate diesel engine[J]. Science and Technology Today, 1972(7):35-36. [12] 王志达,韩树.摆盘发动机运动规律研究[J].镇江船舶学院学报, 1988, 2(2-3):72-82. WANG Zhida, HAN Shu. The study of kinematical law of wobble-plate engine[J]. Journal of Zhenjiang Shipbuilding Institute, 1988, 2(2-3):72-82. [13] HU Simin, XU Xiaojun, ZHANG Lei, et al. Analysis of the kinematics characteristics of the power transmission mechanism of a new wobble plate engine[C]//IEEE Beijing Section, South Asia Institute of Science and Engineering. Proceedings of 20175th International Conference on Mechanical, Automotive and Materials Engineering (CMAME 2017). August 1-3, 2017, Guangzhou, China:IEEE, 2017:75-78. [14] 武泽宇.摆盘式发动机Z轴-摆盘机构动力学分析[D].太原:中北大学, 2015. WU Zeyu. Dynamic analysis on Z-axle and disk mechanism of wobble plate engine[D]. Taiyuan:North University of China, 2015. [15] 张雨潇,邓涛,柳平,等.新型斜盘发动机设计与动力学仿真[J].机械传动, 2021, 45(8):157-164. ZHANG Yuxiao, DENG Tao, LIU Ping, et al. Design and dynamics simulation of a new type of swashplate engine[J]. Journal of Mechanical Transmission, 2021, 45(8):157-164. [16] 朱拥勇,王德石,严侃.摆盘发动机空间机构的震动力完全平衡研究[J].舰船科学技术, 2007, 29(1):41-43, 52. ZHU Yongyong, WANG Deshi, YAN Kan. The analysis on complete balancing of shaking forces with the spatial linkage of wobble-plate engines[J]. Ship Science and Technology, 2007, 29(1):41-43, 52. [17] 朱拥勇,王德石.摆盘空间机构振动力与振动力矩完全平衡研究[J].中国机械工程, 2008, 19(11):1343-1347. ZHU Yongyong, WANG Deshi. Analysis on complete balance of shaking forces and shaking moments with spatial wobble-plate mechanism[J]. China Mechanical Engineering, 2008, 19(11):1343-1347. [18] JIN Jing, ZHANG Zhenshan, XIONG Xin. Vibration analysis and optimization of wobble plate engine[J]. Advanced Materials Research, 2012, 1673(479-481):2267-2270. [19] 顾祥生.摆盘式发动机振动特性分析[J].镇江船舶学院学报, 1991, 5(04):43-50. GU Xiangsheng. Analysis of the vibration characteristics of wobble plate engine[J]. Journal of Zhenjiang Shipbuilding Institute, 1991, 5(04):43-50. [20] 张方方,张振山,梁伟阁,等.斜盘发动机缸内热力过程数值分析研究[J].机械工程学报, 2013, 49(16):114-120. ZHANG Fangfang, ZHANG Zhenshan, LIANG Weige, et al. Numerical analysis on in-cylinder thermodynamic process of swash-plate engine[J]. Journal of Mechanical Engineering, 2013, 49(16):114-120. [21] BARRENSCHEEN J. Die systematische Ausnutzung von S-ymmetrieeigenschaften beim Konstruieren[D]. Braunsc-hweig:Technische Universität Braunschweig, 1990. BARRENSCHEEN J. The systematic exploitation of symmetry properties in design[D]. Braunschweig:Technical University of Braunschweig, 1990. [22] 冯培恩,曾令斌,邱清盈,等.机械功能对称的概念体系及其应用[J].机械工程学报, 2012, 48(11):1-10. FENG Peien, ZENG Lingbin, QIU Qingying, et al. Research on mechanical function symmetry architecture and its application[J]. Journal of Mechanical Engineering, 2012, 48(11):1-10. [23] PARKER R G. A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration[J]. Journal of Sound and Vibration, 2000, 236(4):561-573. [24] DONG B, PARKER R G. Modal properties of cyclically symmetric systems with central components vibrating as three-dimensional rigid bodies[J]. Journal of Sound and Vibration, 2018, 435:350-371. [25] WANG Shiyu, XIU Jie, CAO Shuqian, et al. Analytical treatment with rigid-elastic vibration of permanent magnet motors with expanding application to cyclically symmetric power-transmission systems[J]. ASME Journal of Vibration and Acoustics, 2014, 136(2):021014. [26] 闻德生,潘为圆,商旭东,等.双作用双转子叶片马达的转矩特性[J].华中科技大学学报, 2017, 45(9):90-95. WEN Desheng, PAN Weiyuan, SHANG Xudong, et al. Torque characteristics for double-acting and dual-rotor vane motor[J]. Journal of Huazhong University of Science and Technology, 2017, 45(9):90-95. [27] NOGUCHI S,HIRUMA K,KAWA H,et al. The Influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution[J]. Precision Engineering, 2004, 29(1):11-18. [28] DUKE, STEPHEN N. Axial piston machines:European Union, EP2633207[P]. 2020-02-19. |