• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (24): 1-10.doi: 10.3901/JME.2024.24.001

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

动态视觉赋能的非接触式装备迁移诊断

李响, 陈欣瑞, 雷亚国, 李乃鹏, 杨彬, 俞舒鹏   

  1. 西安交通大学现代设计及转子轴承系统教育部重点实验室 西安 710049
  • 收稿日期:2023-11-09 修回日期:2024-04-28 出版日期:2024-12-20 发布日期:2025-02-01
  • 作者简介:李响,男,1990年出生,副教授,特聘研究员,博士研究生导师。主要研究方向为工业人工智能、智能故障诊断与预测、机器视觉等。E-mail:lixiang@xjtu.edu.cn;雷亚国(通信作者),男,1979年出生,教授。主要研究方向为机械装备智能运维、动力学建模、智能故障诊断与预测等。E-mail:yaguolei@mail.xjtu.edu.cn

Dynamic Vision Enabled Contactless Intelligent Machine Transfer Diagnosis Method

LI Xiang, CHEN Xinrui, LEI Yaguo, LI Naipeng, YANG Bin, YU Shupeng   

  1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049
  • Received:2023-11-09 Revised:2024-04-28 Online:2024-12-20 Published:2025-02-01

摘要: 振动测量与信号处理是机械装备故障诊断的重要方法。目前,主流的接触式振动测量方法已经取得了显著的成果。然而,此类方法对传感器部署环境有较高要求,在很多工程场景下难以适用。因此,非接触式机械振动测量与故障诊断方法逐渐得到广泛关注。事件相机作为一种受生物启发的非接触式动态视觉传感器,具有极高的时间分辨率、高动态范围、低数据冗余等优秀特性,能够从视觉角度准确捕捉机械装备微振动。提出了一种动态视觉赋能的非接触式机械装备智能迁移诊断方法。首先,基于事件相机采集的机械装备动态视觉振动信号,建立了面向动态事件流数据的跨领域扩散生成模型,实现了对实测场景下装备未知故障状态的动态视觉数据智能生成。在此基础上,提出了一种基于类脑计算的动态视觉数据特征提取与装备故障模式智能识别方法,实现了机械装备变工况下跨领域迁移诊断。最后,所提方法在核电机泵冷却循环试验台上针对关键旋转机械部件进行了验证,试验结果表明所提方法实现了基于动态视觉数据的非接触式机械装备智能迁移诊断,为难以部署接触式振动传感器的工程场景下装备振动测量与故障诊断问题提供了一种新型视觉解决方案。

关键词: 智能故障诊断, 非接触式振动测量, 事件相机, 扩散模型, 类脑计算

Abstract: Vibration monitoring and signal processing are crucial methods for machine fault diagnosis. Currently, the popular contact vibration measurement method has achieved significant results. However, such methods have high requirements for deployment environments, and are not suitable for many engineering scenarios. Therefore, contactless methods for vibration monitoring and fault diagnosis are gaining increasing attention. Event-based camera is a bio-inspired contactless dynamic visual sensor with extremely high temporal resolution, high dynamic range, and low data redundancy, which can capture mechanical micro-vibrations from a visual perspective. This paper proposes a contactless machine intelligent transfer diagnosis method enabled by dynamic vision. An event-based camera is used to capture the dynamic visual vibration signals of machines. A cross-domain diffusion generation model of dynamic visual data is established, enabling the intelligent generation of visual data in unknown fault states in testing scenarios. A novel intelligent method for processing dynamic visual data and recognizing machine fault patterns is proposed based on the neuromorphic computing framework, achieving cross-domain intelligent transfer diagnosis effect. The proposed method has been validated on a nuclear power plant pump circulation test bench. The results show that the proposed method is able to achieve intelligent transfer diagnosis of machines based on dynamic visual data, and provides an effective and promising solution for vibration measurement and fault diagnosis in engineering scenarios in the perspective of vision.

Key words: intelligent fault diagnosis, contactless vibration monitoring, event-based camera, diffusion model, neuromorphic computing

中图分类号: