• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 447-456.doi: 10.3901/JME.2024.22.447

• 交叉与前沿 • 上一篇    下一篇

扫码分享

不同工况下液环泵轴向叶顶间隙泄漏流的等离子体激励调控研究

郭广强1,2, 李瑞安1, 张人会1,2, 陈学炳1,2, 王静宜1   

  1. 1. 兰州理工大学能源与动力工程学院 兰州 730050;
    2. 甘肃省流体机械及系统重点实验室 兰州 730050
  • 收稿日期:2024-01-05 修回日期:2024-07-15 出版日期:2024-11-20 发布日期:2025-01-02
  • 作者简介:郭广强,男,1986年出生,副教授,硕士研究生导师。主要研究方向为水力机械内流流动及其流动控制。E-mail:guoguangqiang_ggq@163.com;张人会(通信作者),男,1977年出生,教授,博士研究生导师。主要研究方向为水力机械内部流动及性能优化。E-mail:zhangrhlut@163.com
  • 基金资助:
    国家自然科学基金(52269021,51979135)、中国博士后科学基金(2022 MD713759)、甘肃省自然科学基金(21JR7RA220)和兰州理工大学红柳优秀青年人才支持计划资助项目。

Study on Plasma Excitation Control of Axial Tip Leakage Flow in Liquid Ring Pump under Different Operating Conditions

GUO Guangqiang1,2, LI Ruian1, ZHANG Renhui1,2, CHEN Xuebing1,2, WANG Jingyi1   

  1. 1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050;
    2. Key Laboratory of Fluid Machinery and Systems of Gansu Province, Lanzhou 730050
  • Received:2024-01-05 Revised:2024-07-15 Online:2024-11-20 Published:2025-01-02
  • About author:10.3901/JME.2024.22.447

摘要: 液环泵叶轮轴向间隙泄漏加剧了泵内气液流动结构的复杂多变,导致泵性能及运行稳定性降低。为此,引入等离子体激励技术对泵间隙泄漏流动进行控制,探究等离子体激励对不同流量工况下间隙泄漏流动的调控机理。研究结果表明,15 kV激励电压的等离子体激励使液环泵在流量为0.01 kg/s、0.03 kg/s及0.05 kg/s工况的效率相对值分别提升了3.6%、4%及0.6%;流量为0.03 kg/s工况的泄漏涡在等离子体激励作用下沿泄漏流反方向前移,其降低了近壁区湍流结构的复杂性,导致间隙泄漏流水力损失和压力脉动强度的减小,起到明显的增效扩稳效果;流量为0.05 kg/s工况下的泄漏流在等离子体激励下呈波浪流流型且其在流动过程中出现多个二次流结构,导致等离子体抑制效果不明显。不同流量工况下,当等离子体激励位置位于叶片顶部区域时,轴向间隙泄漏得到有效抑制;随着叶轮的旋转,当激励位置逐渐向泄漏流下游移动时,由于泄漏流充分发展,其流动控制效果逐渐减弱。研究结果可为液环泵性能优化提供理论参考。

关键词: 液环泵, 不同流量工况, 轴向间隙泄漏, 等离子体激励, 流动控制

Abstract: The axial clearance leakage of liquid ring pump impeller intensifies the complexity and polytropy of the gas-liquid flow structure within the pump, which leads to the decrease of pump performance and operation stability. Therefore, the plasma excitation technology is introduced to control the pump clearance leakage flow, and the regulation mechanism of plasma excitation on the clearance leakage flow under different flow conditions is explored. The research results show that the plasma excitation with a 15 kV excitation voltage increases the relative value of efficiency of the liquid ring pump by 3.6%, 4%, and 0.6% under flow rates of 0.01 kg/s, 0.03 kg/s, and 0.05 kg/s, respectively. The leakage vortex with a flow rate of 0.03 kg/s moves forward in the opposite direction of the leakage flow under the action of plasma excitation, which effectively reduces the complexity of the turbulent structure near the wall area, resulting in a decrease in the hydraulic loss and pressure fluctuation intensity of the clearance leakage, and has a significant effect of efficiency enhancement and stability expansion. Under the operation of 0.05 kg/s flow rate, the leakage flow is a wavy flow pattern under the plasma excitation and it appears multiple secondary flow structures in the flow process, which leads to the insignificant effect of plasma suppression. The leakage flow can be effectively suppressed when the plasma excitation position is located in the axial tip region of the blade under different flow rates. As the excitation position gradually moves downstream of the leakage flow, the flow control effect gradually weakens due to the full development of the leakage flow. The research results can provide a theoretical reference for the performance optimization of liquid ring pump.

Key words: liquid ring pump, different flow rate conditions, axial clearance leakage, plasma excitation, flow control

中图分类号: